
PL/SQL - Overview

Features of PL/SQL

Advantages of PL/SQL

PL/SQL - Basic Syntax

The 'Hello World' Example

The PL/SQL Identifiers

The PL/SQL Delimiters

The PL/SQL Comments

PL/SQL Program Units

PL/SQL - Data Types

PL/SQL Scalar Data Types and Subtypes

PL/SQL Numeric Data Types and Subtypes

PL/SQL Character Data Types and Subtypes

PL/SQL Boolean Data Types

PL/SQL Datetime and Interval Types

PL/SQL Large Object (LOB) Data Types

PL/SQL User-Defined Subtypes

NULLs in PL/SQL

PL/SQL - Variables

Variable Declaration in PL/SQL

Initializing Variables in PL/SQL

Variable Scope in PL/SQL

Assigning SQL Query Results to PL/SQL Variables

PL/SQL - Constants and Literals

Declaring a Constant

The PL/SQL Literals

PL/SQL - Operators

Arithmetic Operators

Relational Operators

Comparison Operators

Logical Operators

PL/SQL Operator Precedence

PL/SQL - Conditions

PL/SQL - Loops

Labeling a PL/SQL Loop

The Loop Control Statements

PL/SQL - Strings

Declaring String Variables

PL/SQL String Functions and Operators

Example 1

Example 2

PL/SQL - Arrays

Creating a Varray Type

Example 1

Example 2

PL/SQL - Procedures

Parts of a PL/SQL Subprogram

Creating a Procedure

Example

Executing a Standalone Procedure

Deleting a Standalone Procedure

Parameter Modes in PL/SQL Subprograms

IN & OUT Mode Example 1

IN & OUT Mode Example 2

Methods for Passing Parameters

Positional Notation

Named Notation

Mixed Notation

PL/SQL - Functions

Creating a Function

Example

Calling a Function

Example

PL/SQL Recursive Functions

PL/SQL - Cursors

Implicit Cursors

Example

Explicit Cursors

Declaring the Cursor

Opening the Cursor

Fetching the Cursor

Closing the Cursor

Example

PL/SQL - Records

Table-Based Records

Cursor-Based Records

User-Defined Records

Defining a Record

Accessing Fields

Records as Subprogram Parameters

PL/SQL - Exceptions

Syntax for Exception Handling

Example

Raising Exceptions

User-defined Exceptions

Example

Pre-defined Exceptions

PL/SQL - Triggers

Benefits of Triggers

Creating Triggers

Example

Triggering a Trigger

PL/SQL - Packages

Package Specification

Package Body

Using the Package Elements

Example

The Package Specification

Creating the Package Body

Using The Package

PL/SQL - Collections

Index-By Table

Example

Example

Nested Tables

Example

Example

Collection Methods

Collection Exceptions

PL/SQL - Transactions

Starting and Ending a Transaction

Committing a Transaction

Rolling Back Transactions

Savepoints

Automatic Transaction Control

PL/SQL - Date & Time

Field Values for Datetime and Interval Data Types

The Datetime Data Types and Functions

DATE

TIMESTAMP

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE

Examples

The Interval Data Types and Functions

Interval Functions

PL/SQL - DBMS Output

DBMS_OUTPUT Subprograms

Example

PL/SQL - Object Oriented

Instantiating an Object

Member Methods

Map method

Order method

Using Map method

Using Order method

Inheritance for PL/SQL Objects

Abstract Objects in PL/SQL

PL/SQL - Overview

The PL/SQL programming language was developed by Oracle Corporation in the late
1980s as a procedural extension language for SQL and the Oracle relational database.
Following are certain notable facts about PL/SQL −

● PL/SQL is a completely portable, high-performance transaction-processing
language.

● PL/SQL provides a built-in, interpreted and OS independent programming
environment.

● PL/SQL can also directly be called from the command-line SQL*Plus interface.
● Direct call can also be made from external programming language calls to

database.
● PL/SQL's general syntax is based on that of ADA and Pascal programming

language.
● Apart from Oracle, PL/SQL is available in TimesTen in-memory database and IBM

DB2.

Features of PL/SQL
PL/SQL has the following features −

● PL/SQL is tightly integrated with SQL.
● It offers extensive error checking.
● It offers numerous data types.
● It offers a variety of programming structures.
● It supports structured programming through functions and procedures.
● It supports object-oriented programming.
● It supports the development of web applications and server pages.

Advantages of PL/SQL
PL/SQL has the following advantages −

● SQL is the standard database language and PL/SQL is strongly integrated with
SQL. PL/SQL supports both static and dynamic SQL. Static SQL supports DML
operations and transaction control from PL/SQL block. In Dynamic SQL, SQL
allows embedding DDL statements in PL/SQL blocks.

● PL/SQL allows sending an entire block of statements to the database at one time.
This reduces network traffic and provides high performance for the applications.

● PL/SQL gives high productivity to programmers as it can query, transform, and
update data in a database.

● PL/SQL saves time on design and debugging by strong features, such as
exception handling, encapsulation, data hiding, and object-oriented data types.

● Applications written in PL/SQL are fully portable.

● PL/SQL provides high security level.
● PL/SQL provides access to predefined SQL packages.
● PL/SQL provides support for Object-Oriented Programming.
● PL/SQL provides support for developing Web Applications and Server Pages.

PL/SQL - Basic Syntax

In this chapter, we will discuss the Basic Syntax of PL/SQL which is a block-structured
language; this means that the PL/SQL programs are divided and written in logical blocks
of code. Each block consists of three sub-parts −

S.No Sections & Description

1

Declarations

This section starts with the keyword DECLARE. It is an optional section

and defines all variables, cursors, subprograms, and other elements to be

used in the program.

2

Executable Commands

This section is enclosed between the keywords BEGIN and END and it is

a mandatory section. It consists of the executable PL/SQL statements of

the program. It should have at least one executable line of code, which

may be just a NULL command to indicate that nothing should be

executed.

3

Exception Handling

This section starts with the keyword EXCEPTION. This optional section

contains exception(s) that handle errors in the program.

Every PL/SQL statement ends with a semicolon (;). PL/SQL blocks can be nested within
other PL/SQL blocks using BEGIN and END. Following is the basic structure of a PL/SQL
block −

DECLARE

<declarations section>

BEGIN

<executable command(s)>

EXCEPTION

<exception handling>

END;

The 'Hello World' Example
DECLARE

message varchar2(20):= 'Hello, World!';

BEGIN

dbms_output.put_line(message);

END;

/

The end; line signals the end of the PL/SQL block. To run the code from the SQL
command line, you may need to type / at the beginning of the first blank line after the
last line of the code. When the above code is executed at the SQL prompt, it produces
the following result −

Hello World

PL/SQL procedure successfully completed.

The PL/SQL Identifiers
PL/SQL identifiers are constants, variables, exceptions, procedures, cursors, and
reserved words. The identifiers consist of a letter optionally followed by more letters,
numerals, dollar signs, underscores, and number signs and should not exceed 30
characters.

By default, identifiers are not case-sensitive. So you can use integer or INTEGER to
represent a numeric value. You cannot use a reserved keyword as an identifier.

The PL/SQL Delimiters
A delimiter is a symbol with a special meaning. Following is the list of delimiters in
PL/SQL −

Delimiter Description

+, -, *, / Addition, subtraction/negation, multiplication, division

% Attribute indicator

' Character string delimiter

. Component selector

(,) Expression or list delimiter

: Host variable indicator

, Item separator

" Quoted identifier delimiter

= Relational operator

@ Remote access indicator

; Statement terminator

:= Assignment operator

=> Association operator

|| Concatenation operator

** Exponentiation operator

<<, >> Label delimiter (begin and end)

/*, */ Multi-line comment delimiter (begin and end)

-- Single-line comment indicator

.. Range operator

<, >, <=, >= Relational operators

<>, '=, ~=, ^= Different versions of NOT EQUAL

The PL/SQL Comments
Program comments are explanatory statements that can be included in the PL/SQL code
that you write and helps anyone reading its source code. All programming languages
allow some form of comments.

The PL/SQL supports single-line and multi-line comments. All characters available inside
any comment are ignored by the PL/SQL compiler. The PL/SQL single-line comments
start with the delimiter -- (double hyphen) and multi-line comments are enclosed by /*
and */.

DECLARE

-- variable declaration

message varchar2(20):= 'Hello, World!';

BEGIN

/*

* PL/SQL executable statement(s)

*/

dbms_output.put_line(message);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Hello World

PL/SQL procedure successfully completed.

PL/SQL Program Units
A PL/SQL unit is any one of the following −

● PL/SQL block
● Function
● Package
● Package body
● Procedure
● Trigger
● Type
● Type body

Each of these units will be discussed in the following chapters.

PL/SQL - Data Types

In this chapter, we will discuss the Data Types in PL/SQL. The PL/SQL variables,
constants and parameters must have a valid data type, which specifies a storage format,
constraints, and a valid range of values. We will focus on the SCALAR and the LOB data
types in this chapter. The other two data types will be covered in other chapters.

S.No Category & Description

1

Scalar

Single values with no internal components, such as a NUMBER, DATE, or

BOOLEAN.

2

Large Object (LOB)

Pointers to large objects that are stored separately from other data items,

such as text, graphic images, video clips, and sound waveforms.

3

Composite

Data items that have internal components that can be accessed

individually. For example, collections and records.

4

Reference

Pointers to other data items.

PL/SQL Scalar Data Types and Subtypes
PL/SQL Scalar Data Types and Subtypes come under the following categories −

S.No Date Type & Description

1

Numeric

Numeric values on which arithmetic operations are performed.

2

Character

Alphanumeric values that represent single characters or strings of

characters.

3

Boolean

Logical values on which logical operations are performed.

4

Datetime

Dates and times.

PL/SQL provides subtypes of data types. For example, the data type NUMBER has a
subtype called INTEGER. You can use the subtypes in your PL/SQL program to make the
data types compatible with data types in other programs while embedding the PL/SQL
code in another program, such as a Java program.

PL/SQL Numeric Data Types and Subtypes
Following table lists out the PL/SQL pre-defined numeric data types and their sub-types
−

S.No Data Type & Description

1

PLS_INTEGER

Signed integer in range -2,147,483,648 through 2,147,483,647,

represented in 32 bits

2
BINARY_INTEGER

Signed integer in range -2,147,483,648 through 2,147,483,647,

represented in 32 bits

3

BINARY_FLOAT

Single-precision IEEE 754-format floating-point number

4

BINARY_DOUBLE

Double-precision IEEE 754-format floating-point number

5

NUMBER(prec, scale)

Fixed-point or floating-point number with absolute value in range 1E-130

to (but not including) 1.0E126. A NUMBER variable can also represent 0

6

DEC(prec, scale)

ANSI specific fixed-point type with maximum precision of 38 decimal

digits

7

DECIMAL(prec, scale)

IBM specific fixed-point type with maximum precision of 38 decimal digits

8

NUMERIC(pre, secale)

Floating type with maximum precision of 38 decimal digits

9

DOUBLE PRECISION

ANSI specific floating-point type with maximum precision of 126 binary

digits (approximately 38 decimal digits)

10

FLOAT

ANSI and IBM specific floating-point type with maximum precision of 126

binary digits (approximately 38 decimal digits)

11

INT

ANSI specific integer type with maximum precision of 38 decimal digits

12

INTEGER

ANSI and IBM specific integer type with maximum precision of 38 decimal

digits

13

SMALLINT

ANSI and IBM specific integer type with maximum precision of 38 decimal

digits

14

REAL

Floating-point type with maximum precision of 63 binary digits

(approximately 18 decimal digits)

Following is a valid declaration −

DECLARE

num1 INTEGER;

num2 REAL;

num3 DOUBLE PRECISION;

BEGIN

null;

END;

/

When the above code is compiled and executed, it produces the following result −

PL/SQL procedure successfully completed

PL/SQL Character Data Types and Subtypes
Following is the detail of PL/SQL pre-defined character data types and their sub-types −

S.No Data Type & Description

1

CHAR

Fixed-length character string with maximum size of 32,767 bytes

2

VARCHAR2

Variable-length character string with maximum size of 32,767 bytes

3

RAW

Variable-length binary or byte string with maximum size of 32,767 bytes,

not interpreted by PL/SQL

4

NCHAR

Fixed-length national character string with maximum size of 32,767 bytes

5

NVARCHAR2

Variable-length national character string with maximum size of 32,767

bytes

6 LONG

Variable-length character string with maximum size of 32,760 bytes

7

LONG RAW

Variable-length binary or byte string with maximum size of 32,760 bytes,

not interpreted by PL/SQL

8

ROWID

Physical row identifier, the address of a row in an ordinary table

9

UROWID

Universal row identifier (physical, logical, or foreign row identifier)

PL/SQL Boolean Data Types
The BOOLEAN data type stores logical values that are used in logical operations. The
logical values are the Boolean values TRUE and FALSE and the value NULL.

However, SQL has no data type equivalent to BOOLEAN. Therefore, Boolean values
cannot be used in −

● SQL statements
● Built-in SQL functions (such as TO_CHAR)
● PL/SQL functions invoked from SQL statements

PL/SQL Datetime and Interval Types

The DATE datatype is used to store fixed-length datetimes, which include the time of
day in seconds since midnight. Valid dates range from January 1, 4712 BC to December
31, 9999 AD.

The default date format is set by the Oracle initialization parameter
NLS_DATE_FORMAT. For example, the default might be 'DD-MON-YY', which includes a
two-digit number for the day of the month, an abbreviation of the month name, and the
last two digits of the year. For example, 01-OCT-12.

Each DATE includes the century, year, month, day, hour, minute, and second. The
following table shows the valid values for each field −

Field Name Valid Datetime Values Valid Interval

Values

YEAR
-4712 to 9999 (excluding year 0) Any nonzero

integer

MONTH 01 to 12 0 to 11

DAY

01 to 31 (limited by the values of

MONTH and YEAR, according to the

rules of the calendar for the locale)

Any nonzero

integer

HOUR 00 to 23 0 to 23

MINUTE 00 to 59 0 to 59

SECOND

00 to 59.9(n), where 9(n) is the

precision of time fractional seconds

0 to 59.9(n), where

9(n) is the

precision of

interval fractional

seconds

TIMEZONE_HOUR
-12 to 14 (range accommodates

daylight savings time changes)
Not applicable

TIMEZONE_MINUTE 00 to 59 Not applicable

TIMEZONE_REGION
Found in the dynamic performance

view V$TIMEZONE_NAMES
Not applicable

TIMEZONE_ABBR
Found in the dynamic performance

view V$TIMEZONE_NAMES
Not applicable

PL/SQL Large Object (LOB) Data Types
Large Object (LOB) data types refer to large data items such as text, graphic images,
video clips, and sound waveforms. LOB data types allow efficient, random, piecewise
access to this data. Following are the predefined PL/SQL LOB data types −

Data Type Description Size

BFILE

Used to store large binary

objects in operating system files

outside the database.

System-dependent.

Cannot exceed 4

gigabytes (GB).

BLOB
Used to store large binary

objects in the database.

8 to 128 terabytes (TB)

CLOB
Used to store large blocks of

character data in the database.

8 to 128 TB

NCLOB
Used to store large blocks of

NCHAR data in the database.

8 to 128 TB

PL/SQL User-Defined Subtypes
A subtype is a subset of another data type, which is called its base type. A subtype has
the same valid operations as its base type, but only a subset of its valid values.

PL/SQL predefines several subtypes in package STANDARD. For example, PL/SQL
predefines the subtypes CHARACTER and INTEGER as follows −

SUBTYPE CHARACTER IS CHAR;

SUBTYPE INTEGER IS NUMBER(38,0);

You can define and use your own subtypes. The following program illustrates defining
and using a user-defined subtype −

DECLARE

SUBTYPE name IS char(20);

SUBTYPE message IS varchar2(100);

salutation name;

greetings message;

BEGIN

salutation := 'Reader ';

greetings := 'Welcome to the World of PL/SQL';

dbms_output.put_line('Hello ' || salutation || greetings);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Hello Reader Welcome to the World of PL/SQL

PL/SQL procedure successfully completed.

NULLs in PL/SQL
PL/SQL NULL values represent missing or unknown data and they are not an integer, a
character, or any other specific data type. Note that NULL is not the same as an empty
data string or the null character value '\0'. A null can be assigned but it cannot be
equated with anything, including itself.

PL/SQL - Variables

In this chapter, we will discuss Variables in Pl/SQL. A variable is nothing but a name
given to a storage area that our programs can manipulate. Each variable in PL/SQL has a
specific data type, which determines the size and the layout of the variable's memory;
the range of values that can be stored within that memory and the set of operations that
can be applied to the variable.

The name of a PL/SQL variable consists of a letter optionally followed by more letters,
numerals, dollar signs, underscores, and number signs and should not exceed 30
characters. By default, variable names are not case-sensitive. You cannot use a reserved
PL/SQL keyword as a variable name.

PL/SQL programming language allows to define various types of variables, such as date
time data types, records, collections, etc. which we will cover in subsequent chapters.
For this chapter, let us study only basic variable types.

Variable Declaration in PL/SQL
PL/SQL variables must be declared in the declaration section or in a package as a global
variable. When you declare a variable, PL/SQL allocates memory for the variable's value
and the storage location is identified by the variable name.

The syntax for declaring a variable is −

variable_name [CONSTANT] datatype [NOT NULL] [:= | DEFAULT initial_value]

Where, variable_name is a valid identifier in PL/SQL, datatype must be a valid PL/SQL
data type or any user defined data type which we already have discussed in the last
chapter. Some valid variable declarations along with their definition are shown below −

sales number(10, 2);
pi CONSTANT double precision := 3.1415;
name varchar2(25);
address varchar2(100);

When you provide a size, scale or precision limit with the data type, it is called a
constrained declaration. Constrained declarations require less memory than
unconstrained declarations. For example −

sales number(10, 2);
name varchar2(25);
address varchar2(100);

Initializing Variables in PL/SQL
Whenever you declare a variable, PL/SQL assigns it a default value of NULL. If you want
to initialize a variable with a value other than the NULL value, you can do so during the
declaration, using either of the following −

● The DEFAULT keyword
● The assignment operator

For example −

counter binary_integer := 0;
greetings varchar2(20) DEFAULT 'Have a Good Day';

You can also specify that a variable should not have a NULL value using the NOT NULL
constraint. If you use the NOT NULL constraint, you must explicitly assign an initial value
for that variable.

It is a good programming practice to initialize variables properly otherwise, sometimes
programs would produce unexpected results. Try the following example which makes
use of various types of variables −

DECLARE
a integer := 10;

b integer := 20;
c integer;
f real;

BEGIN
c := a + b;
dbms_output.put_line('Value of c: ' || c);
f := 70.0/3.0;
dbms_output.put_line('Value of f: ' || f);

END;
/

When the above code is executed, it produces the following result −

Value of c: 30
Value of f: 23.333333333333333333

PL/SQL procedure successfully completed.

Variable Scope in PL/SQL
PL/SQL allows the nesting of blocks, i.e., each program block may contain another inner
block. If a variable is declared within an inner block, it is not accessible to the outer
block. However, if a variable is declared and accessible to an outer block, it is also
accessible to all nested inner blocks. There are two types of variable scope −

● Local variables − Variables declared in an inner block and not accessible to outer
blocks.

● Global variables − Variables declared in the outermost block or a package.

Following example shows the usage of Local and Global variables in its simple form −

DECLARE
-- Global variables
num1 number := 95;
num2 number := 85;

BEGIN
dbms_output.put_line('Outer Variable num1: ' || num1);
dbms_output.put_line('Outer Variable num2: ' || num2);
DECLARE

-- Local variables
num1 number := 195;

num2 number := 185;
BEGIN

dbms_output.put_line('Inner Variable num1: ' || num1);
dbms_output.put_line('Inner Variable num2: ' || num2);

END;
END;
/

When the above code is executed, it produces the following result −

Outer Variable num1: 95
Outer Variable num2: 85
Inner Variable num1: 195
Inner Variable num2: 185

PL/SQL procedure successfully completed.

Assigning SQL Query Results to PL/SQL Variables
You can use the SELECT INTO statement of SQL to assign values to PL/SQL variables.
For each item in the SELECT list, there must be a corresponding, type-compatible
variable in the INTO list. The following example illustrates the concept. Let us create a
table named CUSTOMERS −

(For SQL statements, please refer to the SQL tutorial)

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

);

Table Created

Let us now insert some values in the table −

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (1, 'Ramesh', 32, 'Ahmedabad', 2000.00);

https://www.tutorialspoint.com/sql/index.htm

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (2, 'Khilan', 25, 'Delhi', 1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (3, 'kaushik', 23, 'Kota', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (4, 'Chaitali', 25, 'Mumbai', 6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (5, 'Hardik', 27, 'Bhopal', 8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (6, 'Komal', 22, 'MP', 4500.00);

The following program assigns values from the above table to PL/SQL variables using
the SELECT INTO clause of SQL −

DECLARE
c_id customers.id%type := 1;
c_name customers.name%type;
c_addr customers.address%type;
c_sal customers.salary%type;

BEGIN
SELECT name, address, salary INTO c_name, c_addr, c_sal
FROM customers
WHERE id = c_id;
dbms_output.put_line
('Customer ' ||c_name || ' from ' || c_addr || ' earns ' || c_sal);

END;
/

When the above code is executed, it produces the following result −

Customer Ramesh from Ahmedabad earns 2000

PL/SQL procedure completed successfully

PL/SQL - Constants and Literals

In this chapter, we will discuss constants and literals in PL/SQL. A constant holds a value
that once declared, does not change in the program. A constant declaration specifies its
name, data type, and value, and allocates storage for it. The declaration can also impose
the NOT NULL constraint.

Declaring a Constant
A constant is declared using the CONSTANT keyword. It requires an initial value and
does not allow that value to be changed. For example −

PI CONSTANT NUMBER := 3.141592654;
DECLARE

-- constant declaration
pi constant number := 3.141592654;
-- other declarations
radius number(5,2);
dia number(5,2);
circumference number(7, 2);
area number (10, 2);

BEGIN
-- processing
radius := 9.5;
dia := radius * 2;
circumference := 2.0 * pi * radius;
area := pi * radius * radius;
-- output
dbms_output.put_line('Radius: ' || radius);
dbms_output.put_line('Diameter: ' || dia);
dbms_output.put_line('Circumference: ' || circumference);
dbms_output.put_line('Area: ' || area);

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Radius: 9.5
Diameter: 19
Circumference: 59.69
Area: 283.53

Pl/SQL procedure successfully completed.

The PL/SQL Literals
A literal is an explicit numeric, character, string, or Boolean value not represented by an
identifier. For example, TRUE, 786, NULL, 'tutorialspoint' are all literals of type Boolean,
number, or string. PL/SQL, literals are case-sensitive. PL/SQL supports the following
kinds of literals −

● Numeric Literals
● Character Literals
● String Literals
● BOOLEAN Literals
● Date and Time Literals

The following table provides examples from all these categories of literal values.

S.No Literal Type & Example

1

Numeric Literals

050 78 -14 0 +32767

6.6667 0.0 -12.0 3.14159 +7800.00

6E5 1.0E-8 3.14159e0 -1E38 -9.5e-3

2

Character Literals

'A' '%' '9' ' ' 'z' '('

3

String Literals

'Hello, world!'

'Tutorials Point'

'19-NOV-12'

4

BOOLEAN Literals

TRUE, FALSE, and NULL.

5

Date and Time Literals

DATE '1978-12-25';

TIMESTAMP '2012-10-29 12:01:01';

To embed single quotes within a string literal, place two single quotes next to each other
as shown in the following program −

DECLARE
message varchar2(30):= 'That''s tutorialspoint.com!';

BEGIN
dbms_output.put_line(message);

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

That's tutorialspoint.com!

PL/SQL procedure successfully completed.

PL/SQL - Operators

In this chapter, we will discuss operators in PL/SQL. An operator is a symbol that tells the
compiler to perform specific mathematical or logical manipulation. PL/SQL language is
rich in built-in operators and provides the following types of operators −

● Arithmetic operators
● Relational operators
● Comparison operators
● Logical operators
● String operators

Here, we will understand the arithmetic, relational, comparison and logical operators
one by one. The String operators will be discussed in a later chapter − PL/SQL - Strings.

Arithmetic Operators
Following table shows all the arithmetic operators supported by PL/SQL. Let us assume
variable A holds 10 and variable B holds 5, then −

Show Examples

Operator Description Example

+ Adds two operands A + B will give 15

- Subtracts second operand from the first A - B will give 5

* Multiplies both operands A * B will give 50

/ Divides numerator by de-numerator A / B will give 2

https://www.tutorialspoint.com/plsql/plsql_arithmetic_operators.htm

** Exponentiation operator, raises one operand to

the power of other

A ** B will give

100000

Relational Operators
Relational operators compare two expressions or values and return a Boolean result.
Following table shows all the relational operators supported by PL/SQL. Let us assume
variable A holds 10 and variable B holds 20, then −

Show Examples

Operator Description Example

=
Checks if the values of two operands are equal or not,

if yes then condition becomes true.

(A = B) is not

true.

!=

<>

~=

Checks if the values of two operands are equal or not,

if values are not equal then condition becomes true.

(A != B) is

true.

>

Checks if the value of left operand is greater than the

value of right operand, if yes then condition becomes

true.

(A > B) is not

true.

<

Checks if the value of left operand is less than the

value of right operand, if yes then condition becomes

true.

(A < B) is

true.

https://www.tutorialspoint.com/plsql/plsql_relational_operators.htm

>=

Checks if the value of left operand is greater than or

equal to the value of right operand, if yes then

condition becomes true.

(A >= B) is

not true.

<=

Checks if the value of left operand is less than or

equal to the value of right operand, if yes then

condition becomes true.

(A <= B) is

true

Comparison Operators
Comparison operators are used for comparing one expression to another. The result is
always either TRUE, FALSE or NULL.

Show Examples

Operator Description Example

LIKE

The LIKE operator compares a

character, string, or CLOB value to a

pattern and returns TRUE if the value

matches the pattern and FALSE if it

does not.

If 'Zara Ali' like 'Z% A_i'

returns a Boolean true,

whereas, 'Nuha Ali' like 'Z%

A_i' returns a Boolean

false.

BETWEEN

The BETWEEN operator tests whether

a value lies in a specified range. x

BETWEEN a AND b means that x >= a

and x <= b.

If x = 10 then, x between 5

and 20 returns true, x

between 5 and 10 returns

true, but x between 11 and

20 returns false.

https://www.tutorialspoint.com/plsql/plsql_comparison_operators.htm

IN

The IN operator tests set membership.

x IN (set) means that x is equal to any

member of set.

If x = 'm' then, x in ('a', 'b', 'c')

returns Boolean false but x

in ('m', 'n', 'o') returns

Boolean true.

IS NULL

The IS NULL operator returns the

BOOLEAN value TRUE if its operand

is NULL or FALSE if it is not NULL.

Comparisons involving NULL values

always yield NULL.

If x = 'm', then 'x is null'

returns Boolean false.

Logical Operators
Following table shows the Logical operators supported by PL/SQL. All these operators
work on Boolean operands and produce Boolean results. Let us assume variable A
holds true and variable B holds false, then −

Show Examples

Operator Description Examples

and
Called the logical AND operator. If both the operands

are true then condition becomes true.

(A and B) is

false.

or
Called the logical OR Operator. If any of the two

operands is true then condition becomes true.

(A or B) is

true.

https://www.tutorialspoint.com/plsql/plsql_logical_operators.htm

not

Called the logical NOT Operator. Used to reverse the

logical state of its operand. If a condition is true then

Logical NOT operator will make it false.

not (A and B)

is true.

PL/SQL Operator Precedence
Operator precedence determines the grouping of terms in an expression. This affects
how an expression is evaluated. Certain operators have higher precedence than others;
for example, the multiplication operator has higher precedence than the addition
operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with
the lowest appear at the bottom. Within an expression, higher precedence operators will
be evaluated first.

The precedence of operators goes as follows: =, <, >, <=, >=, <>, !=, ~=, ^=, IS NULL, LIKE,
BETWEEN, IN.

Show Examples

Operator Operation

** exponentiation

+, - identity, negation

*, / multiplication, division

+, -, || addition, subtraction, concatenation

https://www.tutorialspoint.com/plsql/plsql_operators_precedence.htm

comparison

NOT logical negation

AND conjunction

OR inclusion

PL/SQL - Conditions

In this chapter, we will discuss conditions in PL/SQL. Decision-making structures require
that the programmer specify one or more conditions to be evaluated or tested by the
program, along with a statement or statements to be executed if the condition is
determined to be true, and optionally, other statements to be executed if the condition is
determined to be false.

Following is the general form of a typical conditional (i.e., decision making) structure
found in most of the programming languages −

PL/SQL programming language provides following types of decision-making statements.
Click the following links to check their details.

S.No Statement & Description

1

IF - THEN statement

The IF statement associates a condition with a sequence of statements

enclosed by the keywords THEN and END IF. If the condition is true, the

statements get executed and if the condition is false or NULL then the IF

statement does nothing.

2

IF-THEN-ELSE statement

IF statement adds the keyword ELSE followed by an alternative sequence

of statement. If the condition is false or NULL, then only the alternative

https://www.tutorialspoint.com/plsql/plsql_if_then.htm
https://www.tutorialspoint.com/plsql/plsql_if_then_else.htm

sequence of statements get executed. It ensures that either of the

sequence of statements is executed.

3

IF-THEN-ELSIF statement

It allows you to choose between several alternatives.

4

Case statement

Like the IF statement, the CASE statement selects one sequence of

statements to execute.

However, to select the sequence, the CASE statement uses a selector

rather than multiple Boolean expressions. A selector is an expression

whose value is used to select one of several alternatives.

5

Searched CASE statement

The searched CASE statement has no selector, and it's WHEN clauses

contain search conditions that yield Boolean values.

6

nested IF-THEN-ELSE

You can use one IF-THEN or IF-THEN-ELSIF statement inside another

IF-THEN or IF-THEN-ELSIF statement(s).

https://www.tutorialspoint.com/plsql/plsql_if_then_elsif.htm
https://www.tutorialspoint.com/plsql/plsql_case_statement.htm
https://www.tutorialspoint.com/plsql/plsql_searched_case.htm
https://www.tutorialspoint.com/plsql/plsql_nested_if.htm

PL/SQL - Loops

In this chapter, we will discuss Loops in PL/SQL. There may be a situation when you
need to execute a block of code several number of times. In general, statements are
executed sequentially: The first statement in a function is executed first, followed by the
second, and so on.

Programming languages provide various control structures that allow for more
complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple times
and following is the general form of a loop statement in most of the programming
languages −

PL/SQL provides the following types of loop to handle the looping requirements. Click
the following links to check their detail.

S.No Loop Type & Description

1

PL/SQL Basic LOOP

In this loop structure, sequence of statements is enclosed between the

LOOP and the END LOOP statements. At each iteration, the sequence of

statements is executed and then control resumes at the top of the loop.

2

PL/SQL WHILE LOOP

Repeats a statement or group of statements while a given condition is

true. It tests the condition before executing the loop body.

3

PL/SQL FOR LOOP

Execute a sequence of statements multiple times and abbreviates the

code that manages the loop variable.

4

Nested loops in PL/SQL

You can use one or more loop inside any another basic loop, while, or for

loop.

Labeling a PL/SQL Loop
PL/SQL loops can be labeled. The label should be enclosed by double angle brackets
(<< and >>) and appear at the beginning of the LOOP statement. The label name can
also appear at the end of the LOOP statement. You may use the label in the EXIT
statement to exit from the loop.

The following program illustrates the concept −

DECLARE
i number(1);

https://www.tutorialspoint.com/plsql/plsql_basic_loop.htm
https://www.tutorialspoint.com/plsql/plsql_while_loop.htm
https://www.tutorialspoint.com/plsql/plsql_for_loop.htm
https://www.tutorialspoint.com/plsql/plsql_nested_loops.htm

j number(1);
BEGIN

<< outer_loop >>
FOR i IN 1..3 LOOP

<< inner_loop >>
FOR j IN 1..3 LOOP

dbms_output.put_line('i is: '|| i || ' and j is: ' || j);
END loop inner_loop;

END loop outer_loop;
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

i is: 1 and j is: 1
i is: 1 and j is: 2
i is: 1 and j is: 3
i is: 2 and j is: 1
i is: 2 and j is: 2
i is: 2 and j is: 3
i is: 3 and j is: 1
i is: 3 and j is: 2
i is: 3 and j is: 3

PL/SQL procedure successfully completed.

The Loop Control Statements
Loop control statements change execution from its normal sequence. When execution
leaves a scope, all automatic objects that were created in that scope are destroyed.

PL/SQL supports the following control statements. Labeling loops also help in taking the
control outside a loop. Click the following links to check their details.

S.No Control Statement & Description

1

EXIT statement

The Exit statement completes the loop and control passes to the

statement immediately after the END LOOP.

2

CONTINUE statement

Causes the loop to skip the remainder of its body and immediately retest

its condition prior to reiterating.

3

GOTO statement

Transfers control to the labeled statement. Though it is not advised to use

the GOTO statement in your program.

PL/SQL - Strings

The string in PL/SQL is actually a sequence of characters with an optional size
specification. The characters could be numeric, letters, blank, special characters or a
combination of all. PL/SQL offers three kinds of strings −

● Fixed-length strings − In such strings, programmers specify the length while
declaring the string. The string is right-padded with spaces to the length so
specified.

● Variable-length strings − In such strings, a maximum length up to 32,767, for the
string is specified and no padding takes place.

● Character large objects (CLOBs) − These are variable-length strings that can be up
to 128 terabytes.

PL/SQL strings could be either variables or literals. A string literal is enclosed within
quotation marks. For example,

https://www.tutorialspoint.com/plsql/plsql_exit_statement.htm
https://www.tutorialspoint.com/plsql/plsql_continue_statement.htm
https://www.tutorialspoint.com/plsql/plsql_goto_statement.htm

'This is a string literal.' Or 'hello world'

To include a single quote inside a string literal, you need to type two single quotes next
to one another. For example,

'this isn''t what it looks like'

Declaring String Variables
Oracle database provides numerous string datatypes, such as CHAR, NCHAR,
VARCHAR2, NVARCHAR2, CLOB, and NCLOB. The datatypes prefixed with an 'N' are
'national character set' datatypes, that store Unicode character data.

If you need to declare a variable-length string, you must provide the maximum length of
that string. For example, the VARCHAR2 data type. The following example illustrates
declaring and using some string variables −

DECLARE
name varchar2(20);
company varchar2(30);
introduction clob;
choice char(1);

BEGIN
name := 'John Smith';
company := 'Infotech';
introduction := ' Hello! I''m John Smith from Infotech.';
choice := 'y';
IF choice = 'y' THEN

dbms_output.put_line(name);
dbms_output.put_line(company);
dbms_output.put_line(introduction);

END IF;
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

John Smith
Infotech
Hello! I'm John Smith from Infotech.

PL/SQL procedure successfully completed

To declare a fixed-length string, use the CHAR datatype. Here you do not have to
specify a maximum length for a fixed-length variable. If you leave off the length
constraint, Oracle Database automatically uses a maximum length required. The
following two declarations are identical −

red_flag CHAR(1) := 'Y';
red_flag CHAR := 'Y';

PL/SQL String Functions and Operators
PL/SQL offers the concatenation operator (||) for joining two strings. The following table
provides the string functions provided by PL/SQL −

S.No Function & Purpose

1

ASCII(x);

Returns the ASCII value of the character x.

2

CHR(x);

Returns the character with the ASCII value of x.

3

CONCAT(x, y);

Concatenates the strings x and y and returns the appended string.

4

INITCAP(x);

Converts the initial letter of each word in x to uppercase and returns that

string.

5

INSTR(x, find_string [, start] [, occurrence]);

Searches for find_string in x and returns the position at which it occurs.

6

INSTRB(x);

Returns the location of a string within another string, but returns the value

in bytes.

7

LENGTH(x);

Returns the number of characters in x.

8

LENGTHB(x);

Returns the length of a character string in bytes for single byte character

set.

9

LOWER(x);

Converts the letters in x to lowercase and returns that string.

10

LPAD(x, width [, pad_string]) ;

Pads x with spaces to the left, to bring the total length of the string up to

width characters.

11

LTRIM(x [, trim_string]);

Trims characters from the left of x.

12

NANVL(x, value);

Returns value if x matches the NaN special value (not a number),

otherwise x is returned.

13

NLS_INITCAP(x);

Same as the INITCAP function except that it can use a different sort

method as specified by NLSSORT.

14

NLS_LOWER(x) ;

Same as the LOWER function except that it can use a different sort

method as specified by NLSSORT.

15

NLS_UPPER(x);

Same as the UPPER function except that it can use a different sort

method as specified by NLSSORT.

16

NLSSORT(x);

Changes the method of sorting the characters. Must be specified before

any NLS function; otherwise, the default sort will be used.

17

NVL(x, value);

Returns value if x is null; otherwise, x is returned.

18

NVL2(x, value1, value2);

Returns value1 if x is not null; if x is null, value2 is returned.

19

REPLACE(x, search_string, replace_string);

Searches x for search_string and replaces it with replace_string.

20

RPAD(x, width [, pad_string]);

Pads x to the right.

21

RTRIM(x [, trim_string]);

Trims x from the right.

22

SOUNDEX(x) ;

Returns a string containing the phonetic representation of x.

23

SUBSTR(x, start [, length]);

Returns a substring of x that begins at the position specified by start. An

optional length for the substring may be supplied.

24
SUBSTRB(x);

Same as SUBSTR except that the parameters are expressed in bytes

instead of characters for the single-byte character systems.

25

TRIM([trim_char FROM) x);

Trims characters from the left and right of x.

26

UPPER(x);

Converts the letters in x to uppercase and returns that string.

Let us now work out on a few examples to understand the concept −

Example 1
DECLARE

greetings varchar2(11) := 'hello world';
BEGIN

dbms_output.put_line(UPPER(greetings));

dbms_output.put_line(LOWER(greetings));

dbms_output.put_line(INITCAP(greetings));

/* retrieve the first character in the string */
dbms_output.put_line (SUBSTR (greetings, 1, 1));

/* retrieve the last character in the string */
dbms_output.put_line (SUBSTR (greetings, -1, 1));

/* retrieve five characters,
starting from the seventh position. */

dbms_output.put_line (SUBSTR (greetings, 7, 5));

/* retrieve the remainder of the string,
starting from the second position. */

dbms_output.put_line (SUBSTR (greetings, 2));

/* find the location of the first "e" */
dbms_output.put_line (INSTR (greetings, 'e'));

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

HELLO WORLD
hello world
Hello World
h
d
World
ello World
2

PL/SQL procedure successfully completed.

Example 2
DECLARE

greetings varchar2(30) := '......Hello World.....';
BEGIN

dbms_output.put_line(RTRIM(greetings,'.'));
dbms_output.put_line(LTRIM(greetings, '.'));
dbms_output.put_line(TRIM('.' from greetings));

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

......Hello World
Hello World.....
Hello World

PL/SQL procedure successfully completed.

PL/SQL - Arrays

In this chapter, we will discuss arrays in PL/SQL. The PL/SQL programming language
provides a data structure called the VARRAY, which can store a fixed-size sequential
collection of elements of the same type. A varray is used to store an ordered collection
of data, however it is often better to think of an array as a collection of variables of the
same type.

All varrays consist of contiguous memory locations. The lowest address corresponds to
the first element and the highest address to the last element.

An array is a part of collection type data and it stands for variable-size arrays. We will
study other collection types in a later chapter 'PL/SQL Collections'.

Each element in a varray has an index associated with it. It also has a maximum size that
can be changed dynamically.

Creating a Varray Type
A varray type is created with the CREATE TYPE statement. You must specify the
maximum size and the type of elements stored in the varray.

The basic syntax for creating a VARRAY type at the schema level is −

CREATE OR REPLACE TYPE varray_type_name IS VARRAY(n) of <element_type>

Where,

● varray_type_name is a valid attribute name,
● n is the number of elements (maximum) in the varray,
● element_type is the data type of the elements of the array.

Maximum size of a varray can be changed using the ALTER TYPE statement.

For example,

CREATE Or REPLACE TYPE namearray AS VARRAY(3) OF VARCHAR2(10);
/

Type created.

The basic syntax for creating a VARRAY type within a PL/SQL block is −

TYPE varray_type_name IS VARRAY(n) of <element_type>

For example −

TYPE namearray IS VARRAY(5) OF VARCHAR2(10);
Type grades IS VARRAY(5) OF INTEGER;

Let us now work out on a few examples to understand the concept −

Example 1

The following program illustrates the use of varrays −

DECLARE
type namesarray IS VARRAY(5) OF VARCHAR2(10);
type grades IS VARRAY(5) OF INTEGER;
names namesarray;
marks grades;
total integer;

BEGIN
names := namesarray('Kavita', 'Pritam', 'Ayan', 'Rishav', 'Aziz');
marks:= grades(98, 97, 78, 87, 92);
total := names.count;
dbms_output.put_line('Total '|| total || ' Students');
FOR i in 1 .. total LOOP

dbms_output.put_line('Student: ' || names(i) || '
Marks: ' || marks(i));

END LOOP;
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Total 5 Students
Student: Kavita Marks: 98
Student: Pritam Marks: 97
Student: Ayan Marks: 78

Student: Rishav Marks: 87
Student: Aziz Marks: 92

PL/SQL procedure successfully completed.

Please note −

● In Oracle environment, the starting index for varrays is always 1.
● You can initialize the varray elements using the constructor method of the varray

type, which has the same name as the varray.
● Varrays are one-dimensional arrays.
● A varray is automatically NULL when it is declared and must be initialized before

its elements can be referenced.

Example 2

Elements of a varray could also be a %ROWTYPE of any database table or %TYPE of any
database table field. The following example illustrates the concept.

We will use the CUSTOMERS table stored in our database as −

Select * from customers;

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+----------+-----+-----------+----------+

Following example makes the use of cursor, which you will study in detail in a separate
chapter.

DECLARE
CURSOR c_customers is
SELECT name FROM customers;
type c_list is varray (6) of customers.name%type;

name_list c_list := c_list();
counter integer :=0;

BEGIN
FOR n IN c_customers LOOP

counter := counter + 1;
name_list.extend;
name_list(counter) := n.name;
dbms_output.put_line('Customer('||counter ||'):'||name_list(counter));

END LOOP;
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Customer(1): Ramesh
Customer(2): Khilan
Customer(3): kaushik
Customer(4): Chaitali
Customer(5): Hardik
Customer(6): Komal

PL/SQL procedure successfully completed.

PL/SQL - Procedures

In this chapter, we will discuss Procedures in PL/SQL. A subprogram is a program
unit/module that performs a particular task. These subprograms are combined to form
larger programs. This is basically called the 'Modular design'. A subprogram can be
invoked by another subprogram or program which is called the calling program.

A subprogram can be created −

● At the schema level
● Inside a package
● Inside a PL/SQL block

At the schema level, subprogram is a standalone subprogram. It is created with the
CREATE PROCEDURE or the CREATE FUNCTION statement. It is stored in the database
and can be deleted with the DROP PROCEDURE or DROP FUNCTION statement.

A subprogram created inside a package is a packaged subprogram. It is stored in the
database and can be deleted only when the package is deleted with the DROP
PACKAGE statement. We will discuss packages in the chapter 'PL/SQL - Packages'.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of
parameters. PL/SQL provides two kinds of subprograms −

● Functions − These subprograms return a single value; mainly used to compute
and return a value.

● Procedures − These subprograms do not return a value directly; mainly used to
perform an action.

This chapter is going to cover important aspects of a PL/SQL procedure. We will discuss
PL/SQL function in the next chapter.

Parts of a PL/SQL Subprogram
Each PL/SQL subprogram has a name, and may also have a parameter list. Like
anonymous PL/SQL blocks, the named blocks will also have the following three parts −

S.No Parts & Description

1

Declarative Part

It is an optional part. However, the declarative part for a subprogram does

not start with the DECLARE keyword. It contains declarations of types,

cursors, constants, variables, exceptions, and nested subprograms. These

items are local to the subprogram and cease to exist when the

subprogram completes execution.

2
Executable Part

This is a mandatory part and contains statements that perform the

designated action.

3

Exception-handling

This is again an optional part. It contains the code that handles run-time

errors.

Creating a Procedure
A procedure is created with the CREATE OR REPLACE PROCEDURE statement. The
simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as follows −

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]
{IS | AS}
BEGIN
< procedure_body >

END procedure_name;

Where,

● procedure-name specifies the name of the procedure.
● [OR REPLACE] option allows the modification of an existing procedure.
● The optional parameter list contains name, mode and types of the parameters. IN

represents the value that will be passed from outside and OUT represents the
parameter that will be used to return a value outside of the procedure.

● procedure-body contains the executable part.
● The AS keyword is used instead of the IS keyword for creating a standalone

procedure.

Example

The following example creates a simple procedure that displays the string 'Hello World!'
on the screen when executed.

CREATE OR REPLACE PROCEDURE greetings
AS
BEGIN

dbms_output.put_line('Hello World!');
END;
/

When the above code is executed using the SQL prompt, it will produce the following
result −

Procedure created.

Executing a Standalone Procedure
A standalone procedure can be called in two ways −

● Using the EXECUTE keyword
● Calling the name of the procedure from a PL/SQL block

The above procedure named 'greetings' can be called with the EXECUTE keyword as −

EXECUTE greetings;

The above call will display −

Hello World

PL/SQL procedure successfully completed.

The procedure can also be called from another PL/SQL block −

BEGIN
greetings;

END;
/

The above call will display −

Hello World

PL/SQL procedure successfully completed.

Deleting a Standalone Procedure
A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for
deleting a procedure is −

DROP PROCEDURE procedure-name;

You can drop the greetings procedure by using the following statement −

DROP PROCEDURE greetings;

Parameter Modes in PL/SQL Subprograms
The following table lists out the parameter modes in PL/SQL subprograms −

S.No Parameter Mode & Description

1

IN

An IN parameter lets you pass a value to the subprogram. It is a read-only

parameter. Inside the subprogram, an IN parameter acts like a constant. It

cannot be assigned a value. You can pass a constant, literal, initialized

variable, or expression as an IN parameter. You can also initialize it to a

default value; however, in that case, it is omitted from the subprogram

call. It is the default mode of parameter passing. Parameters are passed

by reference.

2

OUT

An OUT parameter returns a value to the calling program. Inside the

subprogram, an OUT parameter acts like a variable. You can change its

value and reference the value after assigning it. The actual parameter

must be variable and it is passed by value.

3

IN OUT

An IN OUT parameter passes an initial value to a subprogram and returns

an updated value to the caller. It can be assigned a value and the value

can be read.

The actual parameter corresponding to an IN OUT formal parameter must

be a variable, not a constant or an expression. Formal parameter must be

assigned a value. Actual parameter is passed by value.

IN & OUT Mode Example 1

This program finds the minimum of two values. Here, the procedure takes two numbers
using the IN mode and returns their minimum using the OUT parameters.

DECLARE
a number;
b number;
c number;

PROCEDURE findMin(x IN number, y IN number, z OUT number) IS
BEGIN

IF x < y THEN
z:= x;

ELSE
z:= y;

END IF;
END;
BEGIN

a:= 23;
b:= 45;
findMin(a, b, c);

dbms_output.put_line(' Minimum of (23, 45) : ' || c);
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Minimum of (23, 45) : 23

PL/SQL procedure successfully completed.

IN & OUT Mode Example 2

This procedure computes the square of value of a passed value. This example shows
how we can use the same parameter to accept a value and then return another result.

DECLARE
a number;

PROCEDURE squareNum(x IN OUT number) IS
BEGIN
x := x * x;

END;
BEGIN

a:= 23;
squareNum(a);
dbms_output.put_line(' Square of (23): ' || a);

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Square of (23): 529

PL/SQL procedure successfully completed.

Methods for Passing Parameters
Actual parameters can be passed in three ways −

● Positional notation
● Named notation
● Mixed notation

Positional Notation

In positional notation, you can call the procedure as −

findMin(a, b, c, d);

In positional notation, the first actual parameter is substituted for the first formal
parameter; the second actual parameter is substituted for the second formal parameter,
and so on. So, a is substituted for x, b is substituted for y, c is substituted for z and d is
substituted for m.

Named Notation

In named notation, the actual parameter is associated with the formal parameter using
the arrow symbol (=>). The procedure call will be like the following −

findMin(x => a, y => b, z => c, m => d);

Mixed Notation

In mixed notation, you can mix both notations in procedure call; however, the positional
notation should precede the named notation.

The following call is legal −

findMin(a, b, c, m => d);

However, this is not legal:

findMin(x => a, b, c, d);

PL/SQL - Functions

In this chapter, we will discuss the functions in PL/SQL. A function is same as a
procedure except that it returns a value. Therefore, all the discussions of the previous
chapter are true for functions too.

Creating a Function

A standalone function is created using the CREATE FUNCTION statement. The simplified
syntax for the CREATE OR REPLACE PROCEDURE statement is as follows −

CREATE [OR REPLACE] FUNCTION function_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]
RETURN return_datatype
{IS | AS}
BEGIN

< function_body >
END [function_name];

Where,

● function-name specifies the name of the function.
● [OR REPLACE] option allows the modification of an existing function.
● The optional parameter list contains name, mode and types of the parameters. IN

represents the value that will be passed from outside and OUT represents the
parameter that will be used to return a value outside of the procedure.

● The function must contain a return statement.
● The RETURN clause specifies the data type you are going to return from the

function.
● function-body contains the executable part.
● The AS keyword is used instead of the IS keyword for creating a standalone

function.

Example

The following example illustrates how to create and call a standalone function. This
function returns the total number of CUSTOMERS in the customers table.

We will use the CUSTOMERS table, which we had created in the PL/SQL Variables
chapter −

Select * from customers;

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00

https://www.tutorialspoint.com/plsql/plsql_variable_types.htm

4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+----------+-----+-----------+----------+

CREATE OR REPLACE FUNCTION totalCustomers
RETURN number IS

total number(2) := 0;
BEGIN

SELECT count(*) into total
FROM customers;

RETURN total;
END;
/

When the above code is executed using the SQL prompt, it will produce the following
result −

Function created.

Calling a Function
While creating a function, you give a definition of what the function has to do. To use a
function, you will have to call that function to perform the defined task. When a program
calls a function, the program control is transferred to the called function.

A called function performs the defined task and when its return statement is executed or
when the last end statement is reached, it returns the program control back to the main
program.

To call a function, you simply need to pass the required parameters along with the
function name and if the function returns a value, then you can store the returned value.
Following program calls the function totalCustomers from an anonymous block −

DECLARE
c number(2);

BEGIN
c := totalCustomers();
dbms_output.put_line('Total no. of Customers: ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Total no. of Customers: 6

PL/SQL procedure successfully completed.

Example

The following example demonstrates Declaring, Defining, and Invoking a Simple PL/SQL
Function that computes and returns the maximum of two values.

DECLARE
a number;
b number;
c number;

FUNCTION findMax(x IN number, y IN number)
RETURN number
IS

z number;
BEGIN

IF x > y THEN
z:= x;

ELSE
Z:= y;

END IF;
RETURN z;

END;
BEGIN

a:= 23;
b:= 45;
c := findMax(a, b);
dbms_output.put_line(' Maximum of (23,45): ' || c);

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Maximum of (23,45): 45

PL/SQL procedure successfully completed.

PL/SQL Recursive Functions
We have seen that a program or subprogram may call another subprogram. When a
subprogram calls itself, it is referred to as a recursive call and the process is known as
recursion.

To illustrate the concept, let us calculate the factorial of a number. Factorial of a number
n is defined as −

n! = n*(n-1)!
= n*(n-1)*(n-2)!

...
= n*(n-1)*(n-2)*(n-3)... 1

The following program calculates the factorial of a given number by calling itself
recursively −

DECLARE
num number;
factorial number;

FUNCTION fact(x number)
RETURN number
IS

f number;
BEGIN

IF x=0 THEN
f := 1;

ELSE
f := x * fact(x-1);

END IF;
RETURN f;
END;

BEGIN
num:= 6;
factorial := fact(num);
dbms_output.put_line(' Factorial '|| num || ' is ' || factorial);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Factorial 6 is 720

PL/SQL procedure successfully completed.

PL/SQL - Cursors

In this chapter, we will discuss the cursors in PL/SQL. Oracle creates a memory area,
known as the context area, for processing an SQL statement, which contains all the
information needed for processing the statement; for example, the number of rows
processed, etc.

A cursor is a pointer to this context area. PL/SQL controls the context area through a
cursor. A cursor holds the rows (one or more) returned by a SQL statement. The set of
rows the cursor holds is referred to as the active set.

You can name a cursor so that it could be referred to in a program to fetch and process
the rows returned by the SQL statement, one at a time. There are two types of cursors −

● Implicit cursors
● Explicit cursors

Implicit Cursors
Implicit cursors are automatically created by Oracle whenever an SQL statement is
executed, when there is no explicit cursor for the statement. Programmers cannot
control the implicit cursors and the information in it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor
is associated with this statement. For INSERT operations, the cursor holds the data that
needs to be inserted. For UPDATE and DELETE operations, the cursor identifies the
rows that would be affected.

In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which
always has attributes such as %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT.
The SQL cursor has additional attributes, %BULK_ROWCOUNT and

%BULK_EXCEPTIONS, designed for use with the FORALL statement. The following table
provides the description of the most used attributes −

S.No Attribute & Description

1

%FOUND

Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one

or more rows or a SELECT INTO statement returned one or more rows.

Otherwise, it returns FALSE.

2

%NOTFOUND

The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE,

or DELETE statement affected no rows, or a SELECT INTO statement

returned no rows. Otherwise, it returns FALSE.

3

%ISOPEN

Always returns FALSE for implicit cursors, because Oracle closes the SQL

cursor automatically after executing its associated SQL statement.

4

%ROWCOUNT

Returns the number of rows affected by an INSERT, UPDATE, or DELETE

statement, or returned by a SELECT INTO statement.

Any SQL cursor attribute will be accessed as sql%attribute_name as shown below in the
example.

Example

We will be using the CUSTOMERS table we had created and used in the previous
chapters.

Select * from customers;

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+----------+-----+-----------+----------+

The following program will update the table and increase the salary of each customer by
500 and use the SQL%ROWCOUNT attribute to determine the number of rows affected
−

DECLARE
total_rows number(2);

BEGIN
UPDATE customers
SET salary = salary + 500;
IF sql%notfound THEN

dbms_output.put_line('no customers selected');
ELSIF sql%found THEN

total_rows := sql%rowcount;
dbms_output.put_line(total_rows || ' customers selected ');

END IF;
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

6 customers selected

PL/SQL procedure successfully completed.

If you check the records in customers table, you will find that the rows have been
updated −

Select * from customers;

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2500.00
2	Khilan	25	Delhi	2000.00
3	kaushik	23	Kota	2500.00
4	Chaitali	25	Mumbai	7000.00
5	Hardik	27	Bhopal	9000.00
6	Komal	22	MP	5000.00
+----+----------+-----+-----------+----------+

Explicit Cursors
Explicit cursors are programmer-defined cursors for gaining more control over the
context area. An explicit cursor should be defined in the declaration section of the
PL/SQL Block. It is created on a SELECT Statement which returns more than one row.

The syntax for creating an explicit cursor is −

CURSOR cursor_name IS select_statement;

Working with an explicit cursor includes the following steps −

● Declaring the cursor for initializing the memory
● Opening the cursor for allocating the memory
● Fetching the cursor for retrieving the data
● Closing the cursor to release the allocated memory

Declaring the Cursor
Declaring the cursor defines the cursor with a name and the associated SELECT
statement. For example −

CURSOR c_customers IS
SELECT id, name, address FROM customers;

Opening the Cursor
Opening the cursor allocates the memory for the cursor and makes it ready for fetching
the rows returned by the SQL statement into it. For example, we will open the above
defined cursor as follows −

OPEN c_customers;

Fetching the Cursor
Fetching the cursor involves accessing one row at a time. For example, we will fetch
rows from the above-opened cursor as follows −

FETCH c_customers INTO c_id, c_name, c_addr;

Closing the Cursor
Closing the cursor means releasing the allocated memory. For example, we will close
the above-opened cursor as follows −

CLOSE c_customers;

Example

Following is a complete example to illustrate the concepts of explicit cursors &minua;

DECLARE
c_id customers.id%type;
c_name customers.name%type;
c_addr customers.address%type;
CURSOR c_customers is

SELECT id, name, address FROM customers;
BEGIN

OPEN c_customers;
LOOP
FETCH c_customers into c_id, c_name, c_addr;

EXIT WHEN c_customers%notfound;
dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_addr);

END LOOP;

CLOSE c_customers;
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

1 Ramesh Ahmedabad
2 Khilan Delhi
3 kaushik Kota
4 Chaitali Mumbai
5 Hardik Bhopal
6 Komal MP

PL/SQL procedure successfully completed.

PL/SQL - Records

In this chapter, we will discuss Records in PL/SQL. A record is a data structure that can
hold data items of different kinds. Records consist of different fields, similar to a row of a
database table.

For example, you want to keep track of your books in a library. You might want to track
the following attributes about each book, such as Title, Author, Subject, Book ID. A
record containing a field for each of these items allows treating a BOOK as a logical unit
and allows you to organize and represent its information in a better way.

PL/SQL can handle the following types of records −

● Table-based
● Cursor-based records
● User-defined records

Table-Based Records
The %ROWTYPE attribute enables a programmer to create table-based and cursorbased
records.

The following example illustrates the concept of table-based records. We will be using
the CUSTOMERS table we had created and used in the previous chapters −

DECLARE

customer_rec customers%rowtype;
BEGIN

SELECT * into customer_rec
FROM customers
WHERE id = 5;
dbms_output.put_line('Customer ID: ' || customer_rec.id);
dbms_output.put_line('Customer Name: ' || customer_rec.name);
dbms_output.put_line('Customer Address: ' || customer_rec.address);
dbms_output.put_line('Customer Salary: ' || customer_rec.salary);

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Customer ID: 5
Customer Name: Hardik
Customer Address: Bhopal
Customer Salary: 9000

PL/SQL procedure successfully completed.

Cursor-Based Records
The following example illustrates the concept of cursor-based records. We will be using
the CUSTOMERS table we had created and used in the previous chapters −

DECLARE
CURSOR customer_cur is

SELECT id, name, address
FROM customers;

customer_rec customer_cur%rowtype;
BEGIN

OPEN customer_cur;
LOOP

FETCH customer_cur into customer_rec;
EXIT WHEN customer_cur%notfound;
DBMS_OUTPUT.put_line(customer_rec.id || ' ' || customer_rec.name);

END LOOP;
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

1 Ramesh
2 Khilan
3 kaushik
4 Chaitali
5 Hardik
6 Komal

PL/SQL procedure successfully completed.

User-Defined Records
PL/SQL provides a user-defined record type that allows you to define the different
record structures. These records consist of different fields. Suppose you want to keep
track of your books in a library. You might want to track the following attributes about
each book −

● Title
● Author
● Subject
● Book ID

Defining a Record

The record type is defined as −

TYPE
type_name IS RECORD
(field_name1 datatype1 [NOT NULL] [:= DEFAULT EXPRESSION],
field_name2 datatype2 [NOT NULL] [:= DEFAULT EXPRESSION],
...
field_nameN datatypeN [NOT NULL] [:= DEFAULT EXPRESSION);

record-name type_name;

The Book record is declared in the following way −

DECLARE
TYPE books IS RECORD
(title varchar(50),

author varchar(50),

subject varchar(100),
book_id number);

book1 books;
book2 books;

Accessing Fields

To access any field of a record, we use the dot (.) operator. The member access operator
is coded as a period between the record variable name and the field that we wish to
access. Following is an example to explain the usage of record −

DECLARE
type books is record

(title varchar(50),
author varchar(50),
subject varchar(100),
book_id number);

book1 books;
book2 books;

BEGIN
-- Book 1 specification
book1.title := 'C Programming';
book1.author := 'Nuha Ali ';
book1.subject := 'C Programming Tutorial';
book1.book_id := 6495407;
-- Book 2 specification
book2.title := 'Telecom Billing';
book2.author := 'Zara Ali';
book2.subject := 'Telecom Billing Tutorial';
book2.book_id := 6495700;

-- Print book 1 record
dbms_output.put_line('Book 1 title : '|| book1.title);
dbms_output.put_line('Book 1 author : '|| book1.author);
dbms_output.put_line('Book 1 subject : '|| book1.subject);
dbms_output.put_line('Book 1 book_id : ' || book1.book_id);

-- Print book 2 record
dbms_output.put_line('Book 2 title : '|| book2.title);
dbms_output.put_line('Book 2 author : '|| book2.author);
dbms_output.put_line('Book 2 subject : '|| book2.subject);

dbms_output.put_line('Book 2 book_id : '|| book2.book_id);
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Book 1 title : C Programming
Book 1 author : Nuha Ali
Book 1 subject : C Programming Tutorial
Book 1 book_id : 6495407
Book 2 title : Telecom Billing
Book 2 author : Zara Ali
Book 2 subject : Telecom Billing Tutorial
Book 2 book_id : 6495700

PL/SQL procedure successfully completed.

Records as Subprogram Parameters

You can pass a record as a subprogram parameter just as you pass any other variable.
You can also access the record fields in the same way as you accessed in the above
example −

DECLARE
type books is record

(title varchar(50),
author varchar(50),
subject varchar(100),
book_id number);

book1 books;
book2 books;

PROCEDURE printbook (book books) IS
BEGIN

dbms_output.put_line ('Book title : ' || book.title);
dbms_output.put_line('Book author : ' || book.author);
dbms_output.put_line('Book subject : ' || book.subject);
dbms_output.put_line('Book book_id : ' || book.book_id);

END;

BEGIN
-- Book 1 specification

book1.title := 'C Programming';
book1.author := 'Nuha Ali ';
book1.subject := 'C Programming Tutorial';
book1.book_id := 6495407;

-- Book 2 specification
book2.title := 'Telecom Billing';
book2.author := 'Zara Ali';
book2.subject := 'Telecom Billing Tutorial';
book2.book_id := 6495700;

-- Use procedure to print book info
printbook(book1);
printbook(book2);

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Book title : C Programming
Book author : Nuha Ali
Book subject : C Programming Tutorial
Book book_id : 6495407
Book title : Telecom Billing
Book author : Zara Ali
Book subject : Telecom Billing Tutorial
Book book_id : 6495700

PL/SQL procedure successfully completed.

PL/SQL - Exceptions

In this chapter, we will discuss Exceptions in PL/SQL. An exception is an error condition
during a program execution. PL/SQL supports programmers to catch such conditions
using EXCEPTION block in the program and an appropriate action is taken against the
error condition. There are two types of exceptions −

● System-defined exceptions
● User-defined exceptions

Syntax for Exception Handling
The general syntax for exception handling is as follows. Here you can list down as many
exceptions as you can handle. The default exception will be handled using WHEN others
THEN −

DECLARE
<declarations section>

BEGIN
<executable command(s)>

EXCEPTION
<exception handling goes here >
WHEN exception1 THEN

exception1-handling-statements
WHEN exception2 THEN

exception2-handling-statements
WHEN exception3 THEN

exception3-handling-statements
........
WHEN others THEN

exception3-handling-statements
END;

Example

Let us write a code to illustrate the concept. We will be using the CUSTOMERS table we
had created and used in the previous chapters −

DECLARE
c_id customers.id%type := 8;
c_name customerS.Name%type;
c_addr customers.address%type;

BEGIN
SELECT name, address INTO c_name, c_addr
FROM customers
WHERE id = c_id;
DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);
DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

EXCEPTION
WHEN no_data_found THEN

dbms_output.put_line('No such customer!');
WHEN others THEN

dbms_output.put_line('Error!');
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

No such customer!

PL/SQL procedure successfully completed.

The above program displays the name and address of a customer whose ID is given.
Since there is no customer with ID value 8 in our database, the program raises the
run-time exception NO_DATA_FOUND, which is captured in the EXCEPTION block.

Raising Exceptions
Exceptions are raised by the database server automatically whenever there is any
internal database error, but exceptions can be raised explicitly by the programmer by
using the command RAISE. Following is the simple syntax for raising an exception −

DECLARE
exception_name EXCEPTION;

BEGIN
IF condition THEN

RAISE exception_name;
END IF;

EXCEPTION
WHEN exception_name THEN
statement;

END;

You can use the above syntax in raising the Oracle standard exception or any
user-defined exception. In the next section, we will give you an example on raising a
user-defined exception. You can raise the Oracle standard exceptions in a similar way.

User-defined Exceptions
PL/SQL allows you to define your own exceptions according to the need of your
program. A user-defined exception must be declared and then raised explicitly, using

either a RAISE statement or the procedure
DBMS_STANDARD.RAISE_APPLICATION_ERROR.

The syntax for declaring an exception is −

DECLARE
my-exception EXCEPTION;

Example

The following example illustrates the concept. This program asks for a customer ID,
when the user enters an invalid ID, the exception invalid_id is raised.

DECLARE
c_id customers.id%type := &cc_id;
c_name customerS.Name%type;
c_addr customers.address%type;
-- user defined exception
ex_invalid_id EXCEPTION;

BEGIN
IF c_id <= 0 THEN

RAISE ex_invalid_id;
ELSE

SELECT name, address INTO c_name, c_addr
FROM customers
WHERE id = c_id;
DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);
DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

END IF;

EXCEPTION
WHEN ex_invalid_id THEN

dbms_output.put_line('ID must be greater than zero!');
WHEN no_data_found THEN

dbms_output.put_line('No such customer!');
WHEN others THEN

dbms_output.put_line('Error!');
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Enter value for cc_id: -6 (let's enter a value -6)
old 2: c_id customers.id%type := &cc_id;
new 2: c_id customers.id%type := -6;
ID must be greater than zero!

PL/SQL procedure successfully completed.

Pre-defined Exceptions
PL/SQL provides many pre-defined exceptions, which are executed when any database
rule is violated by a program. For example, the predefined exception NO_DATA_FOUND
is raised when a SELECT INTO statement returns no rows. The following table lists few
of the important pre-defined exceptions −

Exception
Oracle

Error
SQLCODE Description

ACCESS_INTO_NULL 06530 -6530

It is raised when a null object

is automatically assigned a

value.

CASE_NOT_FOUND 06592 -6592

It is raised when none of the

choices in the WHEN clause of

a CASE statement is selected,

and there is no ELSE clause.

COLLECTION_IS_NULL 06531 -6531

It is raised when a program

attempts to apply collection

methods other than EXISTS to

an uninitialized nested table or

varray, or the program

attempts to assign values to

the elements of an

uninitialized nested table or

varray.

DUP_VAL_ON_INDEX 00001 -1

It is raised when duplicate

values are attempted to be

stored in a column with unique

index.

INVALID_CURSOR 01001 -1001

It is raised when attempts are

made to make a cursor

operation that is not allowed,

such as closing an unopened

cursor.

INVALID_NUMBER 01722 -1722

It is raised when the

conversion of a character

string into a number fails

because the string does not

represent a valid number.

LOGIN_DENIED 01017 -1017

It is raised when a program

attempts to log on to the

database with an invalid

username or password.

NO_DATA_FOUND 01403 +100

It is raised when a SELECT

INTO statement returns no

rows.

NOT_LOGGED_ON 01012 -1012

It is raised when a database

call is issued without being

connected to the database.

PROGRAM_ERROR 06501 -6501
It is raised when PL/SQL has

an internal problem.

ROWTYPE_MISMATCH 06504 -6504

It is raised when a cursor

fetches value in a variable

having incompatible data type.

SELF_IS_NULL 30625 -30625

It is raised when a member

method is invoked, but the

instance of the object type

was not initialized.

STORAGE_ERROR 06500 -6500

It is raised when PL/SQL ran

out of memory or memory was

corrupted.

TOO_MANY_ROWS 01422 -1422

It is raised when a SELECT

INTO statement returns more

than one row.

VALUE_ERROR 06502 -6502

It is raised when an arithmetic,

conversion, truncation, or

sizeconstraint error occurs.

ZERO_DIVIDE 01476 1476

It is raised when an attempt is

made to divide a number by

zero.

PL/SQL - Triggers

In this chapter, we will discuss Triggers in PL/SQL. Triggers are stored programs, which
are automatically executed or fired when some events occur. Triggers are, in fact, written
to be executed in response to any of the following events −

● A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)
● A database definition (DDL) statement (CREATE, ALTER, or DROP).
● A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or

SHUTDOWN).

Triggers can be defined on the table, view, schema, or database with which the event is
associated.

Benefits of Triggers

Triggers can be written for the following purposes −

● Generating some derived column values automatically
● Enforcing referential integrity
● Event logging and storing information on table access
● Auditing
● Synchronous replication of tables
● Imposing security authorizations
● Preventing invalid transactions

Creating Triggers
The syntax for creating a trigger is −

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF }
{INSERT [OR] | UPDATE [OR] | DELETE}
[OF col_name]
ON table_name
[REFERENCING OLD AS o NEW AS n]
[FOR EACH ROW]
WHEN (condition)
DECLARE

Declaration-statements
BEGIN

Executable-statements
EXCEPTION

Exception-handling-statements
END;

Where,

● CREATE [OR REPLACE] TRIGGER trigger_name − Creates or replaces an existing
trigger with the trigger_name.

● {BEFORE | AFTER | INSTEAD OF} − This specifies when the trigger will be
executed. The INSTEAD OF clause is used for creating trigger on a view.

● {INSERT [OR] | UPDATE [OR] | DELETE} − This specifies the DML operation.
● [OF col_name] − This specifies the column name that will be updated.
● [ON table_name] − This specifies the name of the table associated with the trigger.
● [REFERENCING OLD AS o NEW AS n] − This allows you to refer new and old

values for various DML statements, such as INSERT, UPDATE, and DELETE.

● [FOR EACH ROW] − This specifies a row-level trigger, i.e., the trigger will be
executed for each row being affected. Otherwise the trigger will execute just once
when the SQL statement is executed, which is called a table level trigger.

● WHEN (condition) − This provides a condition for rows for which the trigger would
fire. This clause is valid only for row-level triggers.

Example

To start with, we will be using the CUSTOMERS table we had created and used in the
previous chapters −

Select * from customers;

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+----------+-----+-----------+----------+

The following program creates a row-level trigger for the customers table that would fire
for INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This
trigger will display the salary difference between the old values and new values −

CREATE OR REPLACE TRIGGER display_salary_changes
BEFORE DELETE OR INSERT OR UPDATE ON customers
FOR EACH ROW
WHEN (NEW.ID > 0)
DECLARE

sal_diff number;
BEGIN

sal_diff := :NEW.salary - :OLD.salary;
dbms_output.put_line('Old salary: ' || :OLD.salary);
dbms_output.put_line('New salary: ' || :NEW.salary);
dbms_output.put_line('Salary difference: ' || sal_diff);

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Trigger created.

The following points need to be considered here −

● OLD and NEW references are not available for table-level triggers, rather you can
use them for record-level triggers.

● If you want to query the table in the same trigger, then you should use the AFTER
keyword, because triggers can query the table or change it again only after the
initial changes are applied and the table is back in a consistent state.

● The above trigger has been written in such a way that it will fire before any
DELETE or INSERT or UPDATE operation on the table, but you can write your
trigger on a single or multiple operations, for example BEFORE DELETE, which will
fire whenever a record will be deleted using the DELETE operation on the table.

Triggering a Trigger
Let us perform some DML operations on the CUSTOMERS table. Here is one INSERT
statement, which will create a new record in the table −

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (7, 'Kriti', 22, 'HP', 7500.00);

When a record is created in the CUSTOMERS table, the above create trigger,
display_salary_changes will be fired and it will display the following result −

Old salary:
New salary: 7500
Salary difference:

Because this is a new record, old salary is not available and the above result comes as
null. Let us now perform one more DML operation on the CUSTOMERS table. The
UPDATE statement will update an existing record in the table −

UPDATE customers
SET salary = salary + 500
WHERE id = 2;

When a record is updated in the CUSTOMERS table, the above create trigger,
display_salary_changes will be fired and it will display the following result −

Old salary: 1500

New salary: 2000
Salary difference: 500

PL/SQL - Packages

In this chapter, we will discuss the Packages in PL/SQL. Packages are schema objects
that groups logically related PL/SQL types, variables, and subprograms.

A package will have two mandatory parts −

● Package specification
● Package body or definition

Package Specification
The specification is the interface to the package. It just DECLARES the types, variables,
constants, exceptions, cursors, and subprograms that can be referenced from outside
the package. In other words, it contains all information about the content of the
package, but excludes the code for the subprograms.

All objects placed in the specification are called public objects. Any subprogram not in
the package specification but coded in the package body is called a private object.

The following code snippet shows a package specification having a single procedure.
You can have many global variables defined and multiple procedures or functions inside
a package.

CREATE PACKAGE cust_sal AS
PROCEDURE find_sal(c_id customers.id%type);

END cust_sal;
/

When the above code is executed at the SQL prompt, it produces the following result −

Package created.

Package Body

The package body has the codes for various methods declared in the package
specification and other private declarations, which are hidden from the code outside the
package.

The CREATE PACKAGE BODY Statement is used for creating the package body. The
following code snippet shows the package body declaration for the cust_sal package
created above. I assumed that we already have CUSTOMERS table created in our
database as mentioned in the PL/SQL - Variables chapter.

CREATE OR REPLACE PACKAGE BODY cust_sal AS

PROCEDURE find_sal(c_id customers.id%TYPE) IS
c_sal customers.salary%TYPE;
BEGIN

SELECT salary INTO c_sal
FROM customers
WHERE id = c_id;
dbms_output.put_line('Salary: '|| c_sal);

END find_sal;
END cust_sal;
/

When the above code is executed at the SQL prompt, it produces the following result −

Package body created.

Using the Package Elements
The package elements (variables, procedures or functions) are accessed with the
following syntax −

package_name.element_name;

Consider, we already have created the above package in our database schema, the
following program uses the find_sal method of the cust_sal package −

DECLARE
code customers.id%type := &cc_id;

BEGIN
cust_sal.find_sal(code);

END;

https://www.tutorialspoint.com/plsql/plsql_variable_types.htm

/

When the above code is executed at the SQL prompt, it prompts to enter the customer
ID and when you enter an ID, it displays the corresponding salary as follows −

Enter value for cc_id: 1
Salary: 3000

PL/SQL procedure successfully completed.

Example

The following program provides a more complete package. We will use the
CUSTOMERS table stored in our database with the following records −

Select * from customers;

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	3000.00
2	Khilan	25	Delhi	3000.00
3	kaushik	23	Kota	3000.00
4	Chaitali	25	Mumbai	7500.00
5	Hardik	27	Bhopal	9500.00
6	Komal	22	MP	5500.00
+----+----------+-----+-----------+----------+

The Package Specification
CREATE OR REPLACE PACKAGE c_package AS

-- Adds a customer
PROCEDURE addCustomer(c_id customers.id%type,
c_name customers.Name%type,
c_age customers.age%type,
c_addr customers.address%type,
c_sal customers.salary%type);

-- Removes a customer
PROCEDURE delCustomer(c_id customers.id%TYPE);

--Lists all customers
PROCEDURE listCustomer;

END c_package;
/

When the above code is executed at the SQL prompt, it creates the above package and
displays the following result −

Package created.

Creating the Package Body
CREATE OR REPLACE PACKAGE BODY c_package AS

PROCEDURE addCustomer(c_id customers.id%type,
c_name customers.Name%type,
c_age customers.age%type,
c_addr customers.address%type,
c_sal customers.salary%type)

IS
BEGIN

INSERT INTO customers (id,name,age,address,salary)
VALUES(c_id, c_name, c_age, c_addr, c_sal);

END addCustomer;

PROCEDURE delCustomer(c_id customers.id%type) IS
BEGIN

DELETE FROM customers
WHERE id = c_id;

END delCustomer;

PROCEDURE listCustomer IS
CURSOR c_customers is

SELECT name FROM customers;
TYPE c_list is TABLE OF customers.Name%type;
name_list c_list := c_list();
counter integer :=0;
BEGIN

FOR n IN c_customers LOOP
counter := counter +1;
name_list.extend;

name_list(counter) := n.name;
dbms_output.put_line('Customer(' ||counter|| ')'||name_list(counter));
END LOOP;

END listCustomer;

END c_package;
/

The above example makes use of the nested table. We will discuss the concept of
nested table in the next chapter.

When the above code is executed at the SQL prompt, it produces the following result −

Package body created.

Using The Package

The following program uses the methods declared and defined in the package
c_package.

DECLARE
code customers.id%type:= 8;

BEGIN
c_package.addcustomer(7, 'Rajnish', 25, 'Chennai', 3500);
c_package.addcustomer(8, 'Subham', 32, 'Delhi', 7500);
c_package.listcustomer;
c_package.delcustomer(code);
c_package.listcustomer;

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Customer(1): Ramesh
Customer(2): Khilan
Customer(3): kaushik
Customer(4): Chaitali
Customer(5): Hardik
Customer(6): Komal
Customer(7): Rajnish
Customer(8): Subham
Customer(1): Ramesh
Customer(2): Khilan

Customer(3): kaushik
Customer(4): Chaitali
Customer(5): Hardik
Customer(6): Komal
Customer(7): Rajnish

PL/SQL procedure successfully completed

PL/SQL - Collections

In this chapter, we will discuss the Collections in PL/SQL. A collection is an ordered
group of elements having the same data type. Each element is identified by a unique
subscript that represents its position in the collection.

PL/SQL provides three collection types −

● Index-by tables or Associative array
● Nested table
● Variable-size array or Varray

Oracle documentation provides the following characteristics for each type of collections
−

Collection

Type

Number of

Elements

Subscript

Type

Dense or

Sparse

Where

Created

Can Be

Object

Type

Attribute

Associative

array (or

index-by

table)

Unbounded
String or

integer
Either

Only in

PL/SQL

block

No

Nested table Unbounded Integer

Starts

dense,

can

become

sparse

Either in

PL/SQL

block or at

schema

level

Yes

Variablesize

array (Varray)
Bounded Integer

Always

dense

Either in

PL/SQL

block or at

schema

level

Yes

We have already discussed varray in the chapter 'PL/SQL arrays'. In this chapter, we will
discuss the PL/SQL tables.

Both types of PL/SQL tables, i.e., the index-by tables and the nested tables have the
same structure and their rows are accessed using the subscript notation. However,
these two types of tables differ in one aspect; the nested tables can be stored in a
database column and the index-by tables cannot.

Index-By Table
An index-by table (also called an associative array) is a set of key-value pairs. Each key
is unique and is used to locate the corresponding value. The key can be either an
integer or a string.

An index-by table is created using the following syntax. Here, we are creating an
index-by table named table_name, the keys of which will be of the subscript_type and
associated values will be of the element_type

TYPE type_name IS TABLE OF element_type [NOT NULL] INDEX BY subscript_type;

table_name type_name;

Example

Following example shows how to create a table to store integer values along with
names and later it prints the same list of names.

DECLARE
TYPE salary IS TABLE OF NUMBER INDEX BY VARCHAR2(20);
salary_list salary;
name VARCHAR2(20);

BEGIN
-- adding elements to the table
salary_list('Rajnish') := 62000;
salary_list('Minakshi') := 75000;
salary_list('Martin') := 100000;
salary_list('James') := 78000;

-- printing the table
name := salary_list.FIRST;
WHILE name IS NOT null LOOP

dbms_output.put_line
('Salary of ' || name || ' is ' || TO_CHAR(salary_list(name)));
name := salary_list.NEXT(name);

END LOOP;
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Salary of James is 78000
Salary of Martin is 100000
Salary of Minakshi is 75000
Salary of Rajnish is 62000

PL/SQL procedure successfully completed.

Example

Elements of an index-by table could also be a %ROWTYPE of any database table or
%TYPE of any database table field. The following example illustrates the concept. We
will use the CUSTOMERS table stored in our database as −

Select * from customers;

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+----------+-----+-----------+----------+

DECLARE
CURSOR c_customers is

select name from customers;

TYPE c_list IS TABLE of customers.Name%type INDEX BY binary_integer;
name_list c_list;
counter integer :=0;

BEGIN
FOR n IN c_customers LOOP

counter := counter +1;
name_list(counter) := n.name;
dbms_output.put_line('Customer('||counter||'):'||name_lis t(counter));

END LOOP;
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Customer(1): Ramesh
Customer(2): Khilan
Customer(3): kaushik
Customer(4): Chaitali
Customer(5): Hardik
Customer(6): Komal

PL/SQL procedure successfully completed

Nested Tables

A nested table is like a one-dimensional array with an arbitrary number of elements.
However, a nested table differs from an array in the following aspects −

● An array has a declared number of elements, but a nested table does not. The
size of a nested table can increase dynamically.

● An array is always dense, i.e., it always has consecutive subscripts. A nested array
is dense initially, but it can become sparse when elements are deleted from it.

A nested table is created using the following syntax −

TYPE type_name IS TABLE OF element_type [NOT NULL];

table_name type_name;

This declaration is similar to the declaration of an index-by table, but there is no INDEX
BY clause.

A nested table can be stored in a database column. It can further be used for simplifying
SQL operations where you join a single-column table with a larger table. An associative
array cannot be stored in the database.

Example

The following examples illustrate the use of nested table −

DECLARE
TYPE names_table IS TABLE OF VARCHAR2(10);
TYPE grades IS TABLE OF INTEGER;
names names_table;
marks grades;
total integer;

BEGIN
names := names_table('Kavita', 'Pritam', 'Ayan', 'Rishav', 'Aziz');
marks:= grades(98, 97, 78, 87, 92);
total := names.count;
dbms_output.put_line('Total '|| total || ' Students');
FOR i IN 1 .. total LOOP

dbms_output.put_line('Student:'||names(i)||', Marks:' || marks(i));
end loop;

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Total 5 Students
Student:Kavita, Marks:98
Student:Pritam, Marks:97
Student:Ayan, Marks:78
Student:Rishav, Marks:87
Student:Aziz, Marks:92

PL/SQL procedure successfully completed.

Example

Elements of a nested table can also be a %ROWTYPE of any database table or %TYPE of
any database table field. The following example illustrates the concept. We will use the
CUSTOMERS table stored in our database as −

Select * from customers;

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+----------+-----+-----------+----------+

DECLARE
CURSOR c_customers is

SELECT name FROM customers;
TYPE c_list IS TABLE of customerS.No.ame%type;
name_list c_list := c_list();
counter integer :=0;

BEGIN
FOR n IN c_customers LOOP

counter := counter +1;
name_list.extend;
name_list(counter) := n.name;
dbms_output.put_line('Customer('||counter||'):'||name_list(counter));

END LOOP;
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Customer(1): Ramesh
Customer(2): Khilan
Customer(3): kaushik
Customer(4): Chaitali
Customer(5): Hardik
Customer(6): Komal

PL/SQL procedure successfully completed.

Collection Methods
PL/SQL provides the built-in collection methods that make collections easier to use. The
following table lists the methods and their purpose −

S.No Method Name & Purpose

1

EXISTS(n)

Returns TRUE if the nth element in a collection exists; otherwise returns

FALSE.

2

COUNT

Returns the number of elements that a collection currently contains.

3

LIMIT

Checks the maximum size of a collection.

4

FIRST

Returns the first (smallest) index numbers in a collection that uses the

integer subscripts.

5

LAST

Returns the last (largest) index numbers in a collection that uses the

integer subscripts.

6

PRIOR(n)

Returns the index number that precedes index n in a collection.

7

NEXT(n)

Returns the index number that succeeds index n.

8 EXTEND

Appends one null element to a collection.

9

EXTEND(n)

Appends n null elements to a collection.

10

EXTEND(n,i)

Appends n copies of the ith element to a collection.

11

TRIM

Removes one element from the end of a collection.

12

TRIM(n)

Removes n elements from the end of a collection.

13

DELETE

Removes all elements from a collection, setting COUNT to 0.

14

DELETE(n)

Removes the nth element from an associative array with a numeric key or

a nested table. If the associative array has a string key, the element

corresponding to the key value is deleted. If n is null, DELETE(n) does

nothing.

15

DELETE(m,n)

Removes all elements in the range m..n from an associative array or

nested table. If m is larger than n or if m or n is null, DELETE(m,n) does

nothing.

Collection Exceptions
The following table provides the collection exceptions and when they are raised −

Collection Exception Raised in Situations

COLLECTION_IS_NULL You try to operate on an atomically null

collection.

NO_DATA_FOUND

A subscript designates an element that was

deleted, or a nonexistent element of an

associative array.

SUBSCRIPT_BEYOND_COUNT A subscript exceeds the number of elements

in a collection.

SUBSCRIPT_OUTSIDE_LIMIT A subscript is outside the allowed range.

VALUE_ERROR

A subscript is null or not convertible to the key

type. This exception might occur if the key is

defined as a PLS_INTEGER range, and the

subscript is outside this range.

PL/SQL - Transactions

In this chapter, we will discuss the transactions in PL/SQL. A database transaction is an
atomic unit of work that may consist of one or more related SQL statements. It is called
atomic because the database modifications brought about by the SQL statements that
constitute a transaction can collectively be either committed, i.e., made permanent to
the database or rolled back (undone) from the database.

A successfully executed SQL statement and a committed transaction are not same. Even
if an SQL statement is executed successfully, unless the transaction containing the
statement is committed, it can be rolled back and all changes made by the statement(s)
can be undone.

Starting and Ending a Transaction
A transaction has a beginning and an end. A transaction starts when one of the
following events take place −

● The first SQL statement is performed after connecting to the database.
● At each new SQL statement issued after a transaction is completed.

A transaction ends when one of the following events take place −

● A COMMIT or a ROLLBACK statement is issued.

● A DDL statement, such as CREATE TABLE statement, is issued; because in that
case a COMMIT is automatically performed.

● A DCL statement, such as a GRANT statement, is issued; because in that case a
COMMIT is automatically performed.

● User disconnects from the database.
● User exits from SQL*PLUS by issuing the EXIT command, a COMMIT is

automatically performed.
● SQL*Plus terminates abnormally, a ROLLBACK is automatically performed.
● A DML statement fails; in that case a ROLLBACK is automatically performed for

undoing that DML statement.

Committing a Transaction
A transaction is made permanent by issuing the SQL command COMMIT. The general
syntax for the COMMIT command is −

COMMIT;

For example,

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (1, 'Ramesh', 32, 'Ahmedabad', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (2, 'Khilan', 25, 'Delhi', 1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (3, 'kaushik', 23, 'Kota', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (4, 'Chaitali', 25, 'Mumbai', 6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (5, 'Hardik', 27, 'Bhopal', 8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (6, 'Komal', 22, 'MP', 4500.00);

COMMIT;

Rolling Back Transactions
Changes made to the database without COMMIT could be undone using the ROLLBACK
command.

The general syntax for the ROLLBACK command is −

ROLLBACK [TO SAVEPOINT < savepoint_name>];

When a transaction is aborted due to some unprecedented situation, like system failure,
the entire transaction since a commit is automatically rolled back. If you are not using
savepoint, then simply use the following statement to rollback all the changes −

ROLLBACK;

Savepoints

Savepoints are sort of markers that help in splitting a long transaction into smaller units
by setting some checkpoints. By setting savepoints within a long transaction, you can
roll back to a checkpoint if required. This is done by issuing the SAVEPOINT command.

The general syntax for the SAVEPOINT command is −

SAVEPOINT < savepoint_name >;

For example

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (7, 'Rajnish', 27, 'HP', 9500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (8, 'Riddhi', 21, 'WB', 4500.00);
SAVEPOINT sav1;

UPDATE CUSTOMERS
SET SALARY = SALARY + 1000;
ROLLBACK TO sav1;

UPDATE CUSTOMERS
SET SALARY = SALARY + 1000
WHERE ID = 7;
UPDATE CUSTOMERS

SET SALARY = SALARY + 1000
WHERE ID = 8;

COMMIT;

ROLLBACK TO sav1 − This statement rolls back all the changes up to the point, where
you had marked savepoint sav1.

After that, the new changes that you make will start.

Automatic Transaction Control
To execute a COMMIT automatically whenever an INSERT, UPDATE or DELETE
command is executed, you can set the AUTOCOMMIT environment variable as −

SET AUTOCOMMIT ON;

You can turn-off the auto commit mode using the following command −

SET AUTOCOMMIT OFF;

PL/SQL - Date & Time

In this chapter, we will discuss the Date and Time in PL/SQL. There are two classes of
date and time related data types in PL/SQL −

● Datetime data types
● Interval data types

The Datetime data types are −

● DATE
● TIMESTAMP
● TIMESTAMP WITH TIME ZONE
● TIMESTAMP WITH LOCAL TIME ZONE

The Interval data types are −

● INTERVAL YEAR TO MONTH
● INTERVAL DAY TO SECOND

Field Values for Datetime and Interval Data Types
Both datetime and interval data types consist of fields. The values of these fields
determine the value of the data type. The following table lists the fields and their
possible values for datetimes and intervals.

Field Name Valid Datetime Values Valid Interval Values

YEAR -4712 to 9999 (excluding year 0) Any nonzero integer

MONTH 01 to 12 0 to 11

DAY

01 to 31 (limited by the values of

MONTH and YEAR, according to

the rules of the calendar for the

locale)

Any nonzero integer

HOUR 00 to 23 0 to 23

MINUTE 00 to 59 0 to 59

SECOND

00 to 59.9(n), where 9(n) is the

precision of time fractional

seconds

The 9(n) portion is not applicable

for DATE.

0 to 59.9(n), where

9(n) is the precision

of interval fractional

seconds

TIMEZONE_HOUR

-12 to 14 (range accommodates

daylight savings time changes)

Not applicable for DATE or

TIMESTAMP.

Not applicable

TIMEZONE_MINUTE

00 to 59

Not applicable for DATE or

TIMESTAMP.

Not applicable

TIMEZONE_REGION
Not applicable for DATE or

TIMESTAMP.
Not applicable

TIMEZONE_ABBR
Not applicable for DATE or

TIMESTAMP.
Not applicable

The Datetime Data Types and Functions
Following are the Datetime data types −

DATE

It stores date and time information in both character and number datatypes. It is made of
information on century, year, month, date, hour, minute, and second. It is specified as −

TIMESTAMP

It is an extension of the DATE data type. It stores the year, month, and day of the DATE
datatype, along with hour, minute, and second values. It is useful for storing precise time
values.

TIMESTAMP WITH TIME ZONE

It is a variant of TIMESTAMP that includes a time zone region name or a time zone offset
in its value. The time zone offset is the difference (in hours and minutes) between local
time and UTC. This data type is useful for collecting and evaluating date information
across geographic regions.

TIMESTAMP WITH LOCAL TIME ZONE

It is another variant of TIMESTAMP that includes a time zone offset in its value.

Following table provides the Datetime functions (where, x has the datetime value) −

S.No Function Name & Description

1

ADD_MONTHS(x, y);

Adds y months to x.

2

LAST_DAY(x);

Returns the last day of the month.

3

MONTHS_BETWEEN(x, y);

Returns the number of months between x and y.

4 NEXT_DAY(x, day);

Returns the datetime of the next day after x.

5

NEW_TIME;

Returns the time/day value from a time zone specified by the user.

6

ROUND(x [, unit]);

Rounds x.

7

SYSDATE();

Returns the current datetime.

8

TRUNC(x [, unit]);

Truncates x.

Timestamp functions (where, x has a timestamp value) −

S.No Function Name & Description

1
CURRENT_TIMESTAMP();

Returns a TIMESTAMP WITH TIME ZONE containing the current session

time along with the session time zone.

2

EXTRACT({ YEAR | MONTH | DAY | HOUR | MINUTE | SECOND } | {

TIMEZONE_HOUR | TIMEZONE_MINUTE } | { TIMEZONE_REGION | }

TIMEZONE_ABBR) FROM x)

Extracts and returns a year, month, day, hour, minute, second, or time

zone from x.

3

FROM_TZ(x, time_zone);

Converts the TIMESTAMP x and the time zone specified by time_zone to

a TIMESTAMP WITH TIMEZONE.

4

LOCALTIMESTAMP();

Returns a TIMESTAMP containing the local time in the session time zone.

5

SYSTIMESTAMP();

Returns a TIMESTAMP WITH TIME ZONE containing the current database

time along with the database time zone.

6

SYS_EXTRACT_UTC(x);

Converts the TIMESTAMP WITH TIMEZONE x to a TIMESTAMP containing

the date and time in UTC.

7

TO_TIMESTAMP(x, [format]);

Converts the string x to a TIMESTAMP.

8

TO_TIMESTAMP_TZ(x, [format]);

Converts the string x to a TIMESTAMP WITH TIMEZONE.

Examples

The following code snippets illustrate the use of the above functions −

Example 1

SELECT SYSDATE FROM DUAL;

Output −

08/31/2012 5:25:34 PM

Example 2

SELECT TO_CHAR(CURRENT_DATE, 'DD-MM-YYYY HH:MI:SS') FROM DUAL;

Output −

31-08-2012 05:26:14

Example 3

SELECT ADD_MONTHS(SYSDATE, 5) FROM DUAL;

Output −

01/31/2013 5:26:31 PM

Example 4

SELECT LOCALTIMESTAMP FROM DUAL;

Output −

8/31/2012 5:26:55.347000 PM

The Interval Data Types and Functions
Following are the Interval data types −

● IINTERVAL YEAR TO MONTH − It stores a period of time using the YEAR and
MONTH datetime fields.

● INTERVAL DAY TO SECOND − It stores a period of time in terms of days, hours,
minutes, and seconds.

Interval Functions

S.No Function Name & Description

1

NUMTODSINTERVAL(x, interval_unit);

Converts the number x to an INTERVAL DAY TO SECOND.

2

NUMTOYMINTERVAL(x, interval_unit);

Converts the number x to an INTERVAL YEAR TO MONTH.

3

TO_DSINTERVAL(x);

Converts the string x to an INTERVAL DAY TO SECOND.

4

TO_YMINTERVAL(x);

Converts the string x to an INTERVAL YEAR TO MONTH.

PL/SQL - DBMS Output

In this chapter, we will discuss the DBMS Output in PL/SQL. The DBMS_OUTPUT is a
built-in package that enables you to display output, debugging information, and send
messages from PL/SQL blocks, subprograms, packages, and triggers. We have already
used this package throughout our tutorial.

Let us look at a small code snippet that will display all the user tables in the database.
Try it in your database to list down all the table names −

BEGIN
dbms_output.put_line (user || ' Tables in the database:');
FOR t IN (SELECT table_name FROM user_tables)
LOOP

dbms_output.put_line(t.table_name);
END LOOP;

END;
/

DBMS_OUTPUT Subprograms
The DBMS_OUTPUT package has the following subprograms −

S.No Subprogram & Purpose

1

DBMS_OUTPUT.DISABLE;

Disables message output.

2

DBMS_OUTPUT.ENABLE(buffer_size IN INTEGER DEFAULT 20000);

Enables message output. A NULL value of buffer_size represents

unlimited buffer size.

3

DBMS_OUTPUT.GET_LINE (line OUT VARCHAR2, status OUT

INTEGER);

Retrieves a single line of buffered information.

4

DBMS_OUTPUT.GET_LINES (lines OUT CHARARR, numlines IN OUT

INTEGER);

Retrieves an array of lines from the buffer.

5

DBMS_OUTPUT.NEW_LINE;

Puts an end-of-line marker.

6

DBMS_OUTPUT.PUT(item IN VARCHAR2);

Places a partial line in the buffer.

7

DBMS_OUTPUT.PUT_LINE(item IN VARCHAR2);

Places a line in the buffer.

Example
DECLARE

lines dbms_output.chararr;
num_lines number;

BEGIN
-- enable the buffer with default size 20000
dbms_output.enable;

dbms_output.put_line('Hello Reader!');
dbms_output.put_line('Hope you have enjoyed the tutorials!');
dbms_output.put_line('Have a great time exploring pl/sql!');

num_lines := 3;

dbms_output.get_lines(lines, num_lines);

FOR i IN 1..num_lines LOOP
dbms_output.put_line(lines(i));

END LOOP;
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Hello Reader!
Hope you have enjoyed the tutorials!
Have a great time exploring pl/sql!

PL/SQL procedure successfully completed.

PL/SQL - Object Oriented

In this chapter, we will discuss Object-Oriented PL/SQL. PL/SQL allows defining an
object type, which helps in designing object-oriented database in Oracle. An object type
allows you to create composite types. Using objects allow you to implement real world
objects with specific structure of data and methods for operating it. Objects have
attributes and methods. Attributes are properties of an object and are used for storing
an object's state; and methods are used for modeling its behavior.

Objects are created using the CREATE [OR REPLACE] TYPE statement. Following is an
example to create a simple address object consisting of few attributes −

CREATE OR REPLACE TYPE address AS OBJECT
(house_no varchar2(10),
street varchar2(30),
city varchar2(20),
state varchar2(10),
pincode varchar2(10)
);
/

When the above code is executed at the SQL prompt, it produces the following result −

Type created.

Let's create one more object customer where we will wrap attributes and methods
together to have object-oriented feeling −

CREATE OR REPLACE TYPE customer AS OBJECT
(code number(5),
name varchar2(30),
contact_no varchar2(12),
addr address,
member procedure display
);
/

When the above code is executed at the SQL prompt, it produces the following result −

Type created.

Instantiating an Object
Defining an object type provides a blueprint for the object. To use this object, you need
to create instances of this object. You can access the attributes and methods of the
object using the instance name and the access operator (.) as follows −

DECLARE
residence address;

BEGIN
residence := address('103A', 'M.G.Road', 'Jaipur', 'Rajasthan','201301');
dbms_output.put_line('House No: '|| residence.house_no);
dbms_output.put_line('Street: '|| residence.street);
dbms_output.put_line('City: '|| residence.city);
dbms_output.put_line('State: '|| residence.state);
dbms_output.put_line('Pincode: '|| residence.pincode);

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

House No: 103A
Street: M.G.Road
City: Jaipur
State: Rajasthan
Pincode: 201301

PL/SQL procedure successfully completed.

Member Methods
Member methods are used for manipulating the attributes of the object. You provide the
declaration of a member method while declaring the object type. The object body
defines the code for the member methods. The object body is created using the
CREATE TYPE BODY statement.

Constructors are functions that return a new object as its value. Every object has a
system defined constructor method. The name of the constructor is same as the object
type. For example −

residence := address('103A', 'M.G.Road', 'Jaipur', 'Rajasthan','201301');

The comparison methods are used for comparing objects. There are two ways to
compare objects −

Map method

The Map method is a function implemented in such a way that its value depends upon
the value of the attributes. For example, for a customer object, if the customer code is
same for two customers, both customers could be the same. So the relationship
between these two objects would depend upon the value of code.

Order method

The Order method implements some internal logic for comparing two objects. For
example, for a rectangle object, a rectangle is bigger than another rectangle if both its
sides are bigger.

Using Map method
Let us try to understand the above concepts using the following rectangle object −

CREATE OR REPLACE TYPE rectangle AS OBJECT
(length number,
width number,
member function enlarge(inc number) return rectangle,
member procedure display,
map member function measure return number
);
/

When the above code is executed at the SQL prompt, it produces the following result −

Type created.

Creating the type body −

CREATE OR REPLACE TYPE BODY rectangle AS
MEMBER FUNCTION enlarge(inc number) return rectangle IS

BEGIN
return rectangle(self.length + inc, self.width + inc);

END enlarge;
MEMBER PROCEDURE display IS
BEGIN

dbms_output.put_line('Length: '|| length);
dbms_output.put_line('Width: '|| width);

END display;
MAP MEMBER FUNCTION measure return number IS
BEGIN

return (sqrt(length*length + width*width));
END measure;

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Type body created.

Now using the rectangle object and its member functions −

DECLARE
r1 rectangle;
r2 rectangle;
r3 rectangle;
inc_factor number := 5;

BEGIN
r1 := rectangle(3, 4);
r2 := rectangle(5, 7);
r3 := r1.enlarge(inc_factor);
r3.display;
IF (r1 > r2) THEN -- calling measure function

r1.display;
ELSE

r2.display;
END IF;

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Length: 8

Width: 9
Length: 5
Width: 7

PL/SQL procedure successfully completed.

Using Order method
Now, the same effect could be achieved using an order method. Let us recreate the
rectangle object using an order method −

CREATE OR REPLACE TYPE rectangle AS OBJECT
(length number,
width number,
member procedure display,
order member function measure(r rectangle) return number
);
/

When the above code is executed at the SQL prompt, it produces the following result −

Type created.

Creating the type body −

CREATE OR REPLACE TYPE BODY rectangle AS
MEMBER PROCEDURE display IS
BEGIN

dbms_output.put_line('Length: '|| length);
dbms_output.put_line('Width: '|| width);

END display;
ORDER MEMBER FUNCTION measure(r rectangle) return number IS
BEGIN

IF(sqrt(self.length*self.length + self.width*self.width)>
sqrt(r.length*r.length + r.width*r.width)) then
return(1);

ELSE
return(-1);

END IF;
END measure;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Type body created.

Using the rectangle object and its member functions −

DECLARE
r1 rectangle;
r2 rectangle;

BEGIN
r1 := rectangle(23, 44);
r2 := rectangle(15, 17);
r1.display;
r2.display;
IF (r1 > r2) THEN -- calling measure function

r1.display;
ELSE

r2.display;
END IF;

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Length: 23
Width: 44
Length: 15
Width: 17
Length: 23
Width: 44

PL/SQL procedure successfully completed.

Inheritance for PL/SQL Objects
PL/SQL allows creating object from the existing base objects. To implement inheritance,
the base objects should be declared as NOT FINAL. The default is FINAL.

The following programs illustrate the inheritance in PL/SQL Objects. Let us create
another object named TableTop, this is inherited from the Rectangle object. For this, we
need to create the base rectangle object −

CREATE OR REPLACE TYPE rectangle AS OBJECT
(length number,
width number,
member function enlarge(inc number) return rectangle,
NOT FINAL member procedure display) NOT FINAL
/

When the above code is executed at the SQL prompt, it produces the following result −

Type created.

Creating the base type body −

CREATE OR REPLACE TYPE BODY rectangle AS
MEMBER FUNCTION enlarge(inc number) return rectangle IS
BEGIN

return rectangle(self.length + inc, self.width + inc);
END enlarge;
MEMBER PROCEDURE display IS
BEGIN

dbms_output.put_line('Length: '|| length);
dbms_output.put_line('Width: '|| width);

END display;
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Type body created.

Creating the child object tabletop −

CREATE OR REPLACE TYPE tabletop UNDER rectangle
(

material varchar2(20),
OVERRIDING member procedure display

)
/

When the above code is executed at the SQL prompt, it produces the following result −

Type created.

Creating the type body for the child object tabletop

CREATE OR REPLACE TYPE BODY tabletop AS
OVERRIDING MEMBER PROCEDURE display IS
BEGIN

dbms_output.put_line('Length: '|| length);
dbms_output.put_line('Width: '|| width);
dbms_output.put_line('Material: '|| material);

END display;
/

When the above code is executed at the SQL prompt, it produces the following result −

Type body created.

Using the tabletop object and its member functions −

DECLARE
t1 tabletop;
t2 tabletop;

BEGIN
t1:= tabletop(20, 10, 'Wood');
t2 := tabletop(50, 30, 'Steel');
t1.display;
t2.display;

END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Length: 20
Width: 10
Material: Wood
Length: 50
Width: 30
Material: Steel

PL/SQL procedure successfully completed.

Abstract Objects in PL/SQL

The NOT INSTANTIABLE clause allows you to declare an abstract object. You cannot
use an abstract object as it is; you will have to create a subtype or child type of such
objects to use its functionalities.

For example,

CREATE OR REPLACE TYPE rectangle AS OBJECT
(length number,
width number,
NOT INSTANTIABLE NOT FINAL MEMBER PROCEDURE display)
NOT INSTANTIABLE NOT FINAL
/

When the above code is executed at the SQL prompt, it produces the following result −

Type created.

